Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345270

RESUMO

Mitochondrial morphology dynamics regulate signaling pathways during epithelial cell formation and differentiation. The mitochondrial fission protein Drp1 affects the appropriate activation of EGFR and Notch signaling-driven differentiation of posterior follicle cells in Drosophila oogenesis. The mechanisms by which Drp1 regulates epithelial polarity during differentiation are not known. In this study, we show that Drp1-depleted follicle cells are constricted in early stages and present in multiple layers at later stages with decreased levels of apical polarity protein aPKC. These defects are suppressed by additional depletion of mitochondrial fusion protein Opa1. Opa1 depletion leads to mitochondrial fragmentation and increased reactive oxygen species (ROS) in follicle cells. We find that increasing ROS by depleting the ROS scavengers, mitochondrial SOD2 and catalase also leads to mitochondrial fragmentation. Further, the loss of Opa1, SOD2 and catalase partially restores the defects in epithelial polarity and aPKC, along with EGFR and Notch signaling in Drp1-depleted follicle cells. Our results show a crucial interaction between mitochondrial morphology, ROS generation and epithelial cell polarity formation during the differentiation of follicle epithelial cells in Drosophila oogenesis.


Assuntos
Drosophila , Dinâmica Mitocondrial , Animais , Drosophila/genética , Drosophila/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dinâmica Mitocondrial/genética , Catalase , Receptores ErbB/genética , Receptores ErbB/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Proteínas Mitocondriais/metabolismo
2.
PLoS Genet ; 18(2): e1010055, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157701

RESUMO

Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane fusion protein Marf in the Drosophila type II NB lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers of type II NBs but led to a decrease in differentiated progeny. Opa1 depletion decreased the mature intermediate precursor cells (INPs), ganglion mother cells (GMCs) and neurons by the decreased proliferation of the type II NBs and mature INPs. Marf depletion led to a decrease in neurons by a depletion of proliferation of GMCs. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial clustering but did not show defects in differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial clustering and suppressed the loss of mitochondrial activity and defects in proliferation and differentiation in the type II NB lineage. Opa1 depletion led to decreased Notch signaling in the type II NB lineage. Further, Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 depletion. An increase in Notch signaling showed mitochondrial clustering similar to Drp1 mutants. Further, Drp1 mutant overexpression combined with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage, suggesting that fused mitochondria can influence differentiation in the type II NB lineage. Our results implicate crosstalk between proliferation, Notch signaling, mitochondrial activity and fusion as an essential step in differentiation in the type II NB lineage.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Células-Tronco Neurais/metabolismo
3.
Ann Hematol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864906

RESUMO

The pathophysiology of immune thrombocytopenia (ITP) involves immune-mediated platelet destruction. The presence of adipose tissue in obese individuals creates an inflammatory environment that could potentially impact the clinical course and outcomes of ITP. However the relationship between obesity and ITP outcomes has not been well described. We evaluated ITP outcomes in 275 patients diagnosed with primary ITP from 2012 to 2022. Patients were categorized into four groups based on their body mass index (BMI) at diagnosis. Female gender was associated with a lower platelet count at the time of diagnosis at any BMI. Patients with high BMI had lower platelet counts at diagnosis and at platelet nadir (p < 0.001), an increased likelihood of requiring therapy (p < 0.001) and requiring multiple lines of therapy (p = 0.032). Non-obese patients who required corticosteroid treatment experienced a longer remission duration compared to obese patients (p = 0.009) and were less likely to be steroid-dependent (p = 0.048). Our findings suggest that obesity may be a significant risk factor for developing ITP and for ITP prognosis. Future studies are needed to evaluate the role of weight loss intervention in improving ITP outcomes.

4.
J Org Chem ; 89(8): 5536-5545, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38569000

RESUMO

An I2-mediated approach for selective C-H functionalization of unprotected aniline derivatives for synthesizing benzils and quinoxaline derivatives from sulfoxonium ylides has been described. Aniline derivatives and sulfoxonium ylides ornamented with different functional groups showed good compatibility. They afforded the corresponding products with moderate to high yields via a mild and simple procedure. Finally, we validated the practicality of this method by scaling up the reaction and further conversion of the synthesized derivatives into other valuable molecules.

5.
Inorg Chem ; 63(19): 8511-8515, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687917

RESUMO

A digermanium(III) 1,2-dication comprises two cationic centers located at two interconnected Ge atoms. The strong Coulombic repulsion between two positively charged germanium cations hinders their bond formation. Balancing these two oppositions was achieved by using amidinate and cyclic (alkyl)amino carbene (cAAC)-phosphinidenide ligands, where an amidinato cAAC-phosphinidenidogermylene complex, [LGeP(cAACMe)] (2, where L = PhC(NtBu)2, cAACMe = :C{C(Me)2CH2C(Me)2NAr}, and Ar = 2,6-iPr2C6H3), underwent one-electron oxidation with a bis(phosphinidene) radical cation, [(cAACMe)P]2•+, to form a digermanium(III) 1,2-dication, [LGeP(cAACMe)]22+, in compound 4.

6.
J Asthma ; : 1-9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38488853

RESUMO

INTRODUCTION: Once-daily inhalers have been shown to improve adherence leading to lesser discontinuation compared to twice- or thrice-daily inhalers in management of asthma. Combination of Vilanterol and Fluticasone Furoate (VI/FF) is approved for management of asthma and COPD and is available as a dry powder inhaler. Pressurized-Metered Dose Inhalers (pMDIs) offer ease-of-use and therapy alternatives for patients with low inspiratory flow. This study assessed the efficacy and safety of a new once-daily pMDI containing VI/FF in individuals diagnosed with persistent asthma. METHODS: This phase 3, double-blind, randomized controlled study assessed the non-inferiority of VI/FF (12.5 mcg/50 mcg & 12.5 mcg/100 mcg; 2 puffs once-daily) over Formoterol Fumarate and Fluticasone Propionate (FOR/FP, 6 mcg/125 mcg & 6 mcg/250 mcg; 2 puffs twice-daily) in patients with persistent asthma. Primary outcome was change from baseline in trough FEV1 at the end of study (12 weeks). Adverse events and number of exacerbations were used to evaluate safety. RESULTS: A total of 330 patients were randomized into VI/FF (165) and FOR/FP (165). Trough FEV1 significantly improved in both the groups at week 12, with a mean difference (VI/FF minus FOR/FP) being 54.75 mL (95% CI, 8.42-101.08 mL, p = 0.02). The low dose VI/FF had similar efficacy to that of low dose FOR/FP and high dose VI/FF had similar efficacy to high dose FOR/FP. No serious adverse events were reported during the study. CONCLUSION: Once daily VI/FF pMDI was non-inferior to twice daily FOR/FP pMDI in patients with persistent asthma.

7.
Environ Res ; 249: 118397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309563

RESUMO

The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Microalgas , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Fotossíntese , Biomassa
8.
Pol J Pathol ; 75(1): 25-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808606

RESUMO

Small cell lung carcinoma (SCLC) is characterized by rapid growth and an aggressive clinical course. Standard therapy regimes have limited effects on disease course; therefore the prognosis of SCLC is poor. In the current study, the frequency of programmed death ligand 1 (PD-L1) expression in SCLC and its correlation with clinico-pathological features were evaluated. The study included 100 cases of SCLC wherein testing for PD-L1 was done with the SP263 clone on the Ventana benchmark XT system. Cases with > 1% PD-L1 expression in tumour cells or immune cells were categorized as positive. PD-L1 expression was identified in 14% of cases using the cut-off of ≥ 1%. The tumour proportion score was 10% and the immune proportion score was 9.78% using a cut-off of ≥ 1%. PD-L1 positive expression was more frequent in the male population with age > 40 years. All the patients with positive PD-L1 expression were smokers. In the PD-L1 positive group, presence of necrosis was identified in 71.4% of cases and when compared with the PD-L1 negative subgroup this finding was statistically significant (p = 0.010). Personalized targeted therapy for cases of SCLC is still under evaluation. The use of immunotherapeutic targets, such as PD-L1, may help to define a new treatment strategy for SCLC. Development of new treatment strategies may improve prognosis and survival.


Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análise , Masculino , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Idoso de 80 Anos ou mais , Imuno-Histoquímica , Prognóstico
9.
J Environ Manage ; 366: 121711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981261

RESUMO

Monoculture-based microalgae cultivation systems to treat wastewater are well-reported. Despite that, this method has some limitations in terms of nutrient removal potential, environment adaptation, and low biomass productivity. Conversely, microalgae co-cultivation and a two-stage sequential cultivation system (TSSCS) recently emerged as a promising approach to improve the treatment process and biomass productivity through better adaptation to the environment. However, no outdoor large-scale experiments were reported using this approach which hinders the viability of the process. Thus, in the present study, a sequential two-stage large-scale outdoor novel microalgae consortia experiment was developed. In first stage consortia-assisted sequential cultivation, two ratios of Tetraselmis indica (TS) and one ratio of Picochlorum sp. (PC) (2 TS:1 PC) were cultivated in a 1000-L pond containing 75%-municipal wastewater (MWW) + 25%-ASN-III, while in the second stage, 2 PC:1 TS was cultivated in two different ponds, and each containing 375-L 2 TS:1 PC-treated water + 375-L ASN-III. Outdoor parameters and nutrient removal efficiency (NRE), biomass, and biomolecule productivity such as lipid, photosynthetic pigments, astaxanthin, and ß-carotene were quantified, and cost analysis was performed. At the end of the first and second stages, 2 TS:1 PC and 2 PC:1 TS showed maximum NRE of COD (68.71 and 86.40%), TN (66.98 and 94.73%), and TP (82.70 and 94.36%), respectively. Moreover, 2 TS:1 PC and 2 PC:1 TS Pond 1 and 2 produced maximum dry biomass production; 2.41 and ∼2.54 g/L contained lipid content; 36.89 and 34.90% that have 86.50 and 55.79% FAME content respectively. Similarly, 2 TS:1 PC and 2 PC:1 TS biomass exhibited valuable pigments production of astaxanthin i.e., 0.56 and 0.35 mg/g, and ß-carotene; 4.65 and 2.82 mg/g, respectively. The cost analysis suggested that only microalgal-based MWW treatment was unfeasible, while valorization of produced biomass into co-products could offset the operation costs and could allow the option for the microalgal-based sustainable approach for the treatment of MWW and recovery of valuable resources.


Assuntos
Biomassa , Microalgas , Águas Residuárias , Microalgas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos
10.
Food Technol Biotechnol ; 62(2): 188-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39045303

RESUMO

Research background: Coccinia grandis L. is traditionally used for the treatment of diabetes mellitus. Since the scientific evidence and mechanism of action have not yet been extensively investigated, this study aims to evaluate the antidiabetic and cytotoxic effects together with the optimisation and development of a scale-up process design for higher yields of bioactive phytocompounds from C. grandis. Experimental approach: The in silico study was conducted to predict the binding affinity of phytocompounds of C. grandis for α-amylase and α-glucosidase enzymes involved in the pathophysiology of diabetes with pharmacokinetic assessment. Response surface methodology was used to determine the optimum total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC) and antioxidant activities (DPPH and FRAP) in 17 different experimental runs in which the parameters of microwave-assisted extraction such as temperature (50-70 °C), power (400-1000 W) and time (15-45 min) were varied. The phytocompounds were purified and identified using column chromatography, thin-layer chromatography (TLC), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-mass spectrometry (LC-MS). The in vitro antidiabetic activity was determined by α-amylase and α-glucosidase enzymatic inhibitory assays, while cytotoxic investigations were done by measuring haemolytic activity, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and chorioallantoic membrane (CAM) assays. Results and conclusions: The reported major bioactive compounds have shown an excellent binding affinity for α-amylase and α-glucosidase enzymes in the range of -14.28 to -36.12 kJ/mol with good pharmacokinetic properties and toxicities ranging from low to medium. The bioactive constituents such as total phenols, total flavonoids, total tannins and antioxidant activities such as DPPH and FRAP were found to be high and dependent on the optimised microwave-assisted extraction parameters such as temperature, time and power: 55 °C, 45 min and 763 W, respectively. Sixteen compounds were identified by FTIR and LC-MS spectra in the plant sample after preliminary identification, purification and TLC. The percentage of enzyme inhibition depended on the concentration of the extract (7.8-125.0 µg/mL) and was higher than that of acarbose. The haemolytic activity was in accordance with ISO standards and low toxicity was observed in the MTT and CAM assays in the range of 7.8-125.0 µg/mL, suggesting its potential use as an antidiabetic drug and for functional food development. Novelty and scientific contribution: The results of the study open up new opportunities for researchers, scientists and entrepreneurs in the food and pharmaceutical sectors to develop antidiabetic foods and medicines that help diabetics to better control their condition and maintain overall health.

11.
AAPS PharmSciTech ; 25(6): 178, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095623

RESUMO

Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.


Assuntos
Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Inaladores de Pó Seco/métodos , Humanos , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Nanomedicina/métodos , Tamanho da Partícula , Nanotecnologia/métodos
12.
Funct Integr Genomics ; 23(3): 215, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389664

RESUMO

Potatoes in India are very susceptible to apical leaf curl disease, which causes severe symptoms and greater yield losses. Because the majority of potato cultivars are susceptible to the virus, it is crucial to discover sources of resistance and investigate the mechanism of resistance/susceptibility in potato cultivars. In this study, the gene expression profile of two potato cultivars, Kufri Bahar (resistant) and Kufri Pukhraj (susceptible), varying in their level of resistance to ToLCNDV, was analyzed using RNA-Seq. The Ion ProtonTM system was used to sequence eight RiboMinus RNA libraries from inoculated and uninoculated potato plants at 15 and 20 days after inoculation (DAI). The findings indicated that the majority of differentially expressed genes (DEGs) were cultivar-or time-specific. These DEGs included genes for proteins that interact with viruses, genes linked with the cell cycle, genes for proteins involved in defense, transcription and translation initiation factors, and plant hormone signaling pathway genes. Interestingly, defense responses were generated early in Kufri Bahar, at 15 DAI, which may have impeded the replication and spread of ToLCNDV. This research provides a genome-wide transcriptional analysis of two potato cultivars with variable levels of ToLCNDV resistance. At an early stage, we observed suppression of genes that interact with viral proteins, induction of genes associated with restriction of cell division, genes encoding defense proteins, AP2/ERF transcription factors, and altered expression of zinc finger protein genes, HSPs, JA, and SA pathway-related genes. Our findings add to a greater comprehension of the molecular basis of potato resistance to ToLCNDV and may aid in the development of more effective disease management techniques.


Assuntos
Begomovirus , Solanum tuberosum , Solanum tuberosum/genética , RNA-Seq , Biblioteca Gênica
13.
Planta ; 257(4): 80, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913037

RESUMO

MAIN CONCLUSION: Abiotic stresses adversely affect the productivity and production of vegetable crops. The increasing number of crop genomes that have been sequenced or re-sequenced provides a set of computationally anticipated abiotic stress-related responsive genes on which further research may be focused. Knowledge of omics approaches and other advanced molecular tools have all been employed to understand the complex biology of these abiotic stresses. A vegetable can be defined as any component of a plant that is eaten for food. These plant parts may be celery stems, spinach leaves, radish roots, potato tubers, garlic bulbs, immature cauliflower flowers, cucumber fruits, and pea seeds. Abiotic stresses, such as deficient or excessive water, high temperature, cold, salinity, oxidative, heavy metals, and osmotic stress, are responsible for the adverse activity in plants and, ultimately major concern for decreasing yield in many vegetable crops. At the morphological level, altered leaf, shoot and root growth, altered life cycle duration and fewer or smaller organs can be observed. Likewise different physiological and biochemical/molecular processes are also affected in response to these abiotic stresses. In order to adapt and survive in a variety of stressful situations, plants have evolved physiological, biochemical, and molecular response mechanisms. A comprehensive understanding of the vegetable's response to different abiotic stresses and the identification of tolerant genotypes are essential to strengthening each vegetable's breeding program. The advances in genomics and next-generation sequencing have enabled the sequencing of many plant genomes over the last twenty years. A combination of modern genomics (MAS, GWAS, genomic selection, transgenic breeding, and gene editing), transcriptomics, and proteomics along with next-generation sequencing provides an array of new powerful approaches to the study of vegetable crops. This review examines the overall impact of major abiotic stresses on vegetables, adaptive mechanisms and functional genomic, transcriptomic, and proteomic processes used by researchers to minimize these challenges. The current status of genomics technologies for developing adaptable vegetable cultivars that will perform better in future climates is also examined.


Assuntos
Proteômica , Verduras , Melhoramento Vegetal , Genômica , Produtos Agrícolas , Estresse Fisiológico/genética
14.
Planta ; 257(6): 115, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169910

RESUMO

MAIN CONCLUSION: Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.


Assuntos
Melatonina , Metais Pesados , Poluentes do Solo , Melatonina/farmacologia , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Solo
15.
Mol Biol Rep ; 50(5): 4735-4741, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929287

RESUMO

BACKGROUND: The human oncostatin M receptor subunit , commonly known as the oncostatin M receptor (OSMR), is a cell surface protein and belongs to the family of type I cytokine receptors. It is highly expressed in several cancers and is a potential therapeutic target. Structurally, OSMR consists of three major domains: the extracellular, transmembrane, and cytoplasmic domains. The extracellular domain further comprises four Type III fibronectin subdomains. The functional relevance of these type III fibronectin domains is not known yet, and it is of great interest to us to understand their role in OSMR-mediated interactions with other oncogenic proteins. METHODS & RESULTS: The four type III fibronectin domains of hOSMR were amplified by PCR using the pUNO1-hOSMR construct as a template. The molecular size of the amplified products was confirmed by agarose gel electrophoresis. The amplicons were then cloned into a pGEX4T3 vector containing GST as an N-terminal tag. Positive clones with domain inserts were identified by restriction digestion and overexpressed in E. coli Rosetta (DE3) cells. The optimum conditions for overexpression were found to be 1 mM IPTG and an incubation temperature of 37 °C. The overexpression of the fibronectin domains was confirmed by SDS-PAGE, and they are affinity purified by using glutathione agarose beads in three repetitive steps. The purity of the isolated domains analyzed by SDS-PAGE and western blotting showed that they were exactly at their corresponding molecular weights as a single distinct band. CONCLUSION: In this study, we have successfully cloned, expressed, and purified four Type III fibronectin subdomains of hOSMR.


Assuntos
Escherichia coli , Fibronectinas , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Western Blotting , Receptores de Oncostatina M/metabolismo , Clonagem Molecular
16.
Mol Biol Rep ; 50(1): 65-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306008

RESUMO

BACKGROUND: In rice, drought stress at reproductive stage drastically reduces yield, which in turn hampers farmer's efforts towards crop production. The majority of the rice varieties have resistance genes against several abiotic and biotic stresses. Therefore, the traditional landraces were studied to identify QTLs/candidate genes associated with drought tolerance. METHODS AND RESULTS: A high-density SNP-based genetic map was constructed using a Genotyping-by-sequencing (GBS) approach. The recombinant inbred lines (RILs) derived from crossing 'Banglami × Ranjit' were used for QTL analysis. A total map length of 1306.424 cM was constructed, which had an average inter-marker distance of 0.281 cM. The phenotypic evaluation of F6 and F7 RILs were performed under drought stress and control conditions. A total of 42 QTLs were identified under drought stress and control conditions for yield component traits explaining 1.95-13.36% of the total phenotypic variance (PVE). Among these, 19 QTLs were identified under drought stress conditions, whereas 23 QTLs were located under control conditions. A total of 4 QTLs explained a PVE ≥ 10% which are considered as the major QTLs. Moreover, bioinformatics analysis revealed the presence of 6 candidate genes, which showed differential expression under drought and control conditions. CONCLUSION: These QTLs/genes may be deployed for marker-assisted pyramiding to improve drought tolerance in the existing rice varieties.


Assuntos
Oryza , Oryza/genética , Secas , Genótipo , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Fenótipo
17.
Mol Biol Rep ; 50(8): 6349-6359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314604

RESUMO

BACKGROUND: Drought stress is a major constraint for rice production worldwide. Reproductive stage drought stress (RSDS) leads to heavy yield losses in rice. The prospecting of new donor cultivars for identification and introgression of QTLs of major effect (Quantitative trait locus) for drought tolerance is crucial for the development of drought-resilient rice varieties. METHODS AND RESULTS: Our study aimed to map QTLs associated with yield and its related traits under RSDS conditions. A saturated linkage map was constructed using 3417 GBS (Genotyping by sequencing) derived SNP (Single nucleotide polymorphism) markers spanning 1924.136 cM map length with an average marker density of 0.56 cM, in the F3 mapping population raised via cross made between the traditional ahu rice cultivar, Koniahu (drought tolerant) and a high-yielding variety, Disang (drought susceptible). Using the Inclusive composite interval mapping approach, 35 genomic regions governing yield and related traits were identified in pooled data from 198 F3 and F4 segregating lines evaluated for two consecutive seasons under both RSDS and irrigated control conditions. Of the 35 QTLs, 23 QTLs were identified under RSDS with LOD (Logarithm of odds) values ranging between 2.50 and 7.83 and PVE (phenotypic variance explained) values of 2.95-12.42%. Two major QTLs were found to be linked to plant height (qPH1.29) and number of filled grains per panicle (qNOG5.12) under RSDS. Five putative QTLs for grain yield namely, qGY2.00, qGY5.05, qGY6.16, qGY9.19, and qGY10.20 were identified within drought conditions. Fourteen QTL regions having ≤ 10 Mb QTL interval size were further analysed for candidate gene identification and a total of 4146 genes were detected out of these 2263 (54.63%) genes were annotated to at least one gene ontology (GO) term. CONCLUSION: Several QTLs associated with grain yield and yield components and putative candidate genes were identified. The putative QTLs and candidate genes identified could be employed to augment drought resilience in rice after further validation through MAS strategies.


Assuntos
Oryza , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Oryza/genética , Secas , Fenótipo , Mapeamento Cromossômico/métodos , Grão Comestível/genética
18.
Environ Res ; 233: 116357, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295582

RESUMO

Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.


Assuntos
Agricultura , Mudança Climática , Humanos , Animais , Produtos Agrícolas , Solo , Estresse Fisiológico
19.
Mol Divers ; 27(6): 2729-2740, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36534357

RESUMO

A series of novel pyridazine-acetohydrazide hybrids were designed, synthesized, and evaluated for their in vitro and in vivo antihyperglycemic activity. In this context, pyridazine-acetohydrazides (6a-6p) were synthesized by coupling substituted aldehyde with 2-(5-cyano-6-oxo-3,4-diphenylpyridazine-1-6H-yl) acetohydrazide, which was prepared via the reaction of pyridazine ester with hydrazine hydrate. The molecular docking study was carried out to examine the binding affinities and interaction of designed compounds against the DPP-4 enzyme. Compounds 6e, 6f, 6l, and 6n exhibited interaction with active residue. In silico ADMET properties, and toxicity studies corroborated that compounds were found to have good bioavailability and less toxic. The synthesized compounds were further estimated for in vitro DPP-4 activity. Compounds 6e and 6l were found as the most effective DPP-4 inhibitor in this series with IC50 values (6.48, 8.22 nM) when compared with sitagliptin (13.02 nM). According to the toxicity assay compound, 6l showed very less toxicity at a higher concentration so further selected for the in vivo antihyperglycemic activity.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Piridazinas , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Ligantes , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Piridazinas/farmacologia
20.
Indian J Med Res ; 158(3): 276-283, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37815070

RESUMO

Background & objectives: Current practice around transfusion trigger in critically ill sepsis patients is not clear. Moreover, any association of haemoglobin trigger and other transfusion parameters such as age of red blood cells (RBCs) at transfusion and number of units of RBCs transfused with mortality and other adverse outcomes need further assessment. Methods: In this prospective study, patients aged 18-70 yr and admitted to intensive care with a diagnosis of sepsis were included (n=108). Baseline demographic, clinical and laboratory parameters were noted and various transfusion data, i.e., haemoglobin trigger, number of units of RBCs and the age of RBCs were recorded. Following outcome data were collected: 28 and 90 day mortality, duration of mechanical ventilation, vasopressor therapy, intensive care unit (ICU) and hospital stay and requirement of renal replacement therapy. Results: Of the total 108 participants, 78 (72.2%) survived till 28 days and 66 (61.1%) survived till 90 days. Transfusion trigger was 6.9 (6.7-7.1) g/dl [median (interquartile range)]. On multivariable logistic regression analysis, acute physiology and chronic health evaluation (APACHE) II [adjusted odds ratio (aOR) (95% confidence interval {CI}): 0.86 (0.78, 0.96); P=0.005], cumulative fluid balance (CFB) [aOR (95% CI): 0.99 (0.99, 0.99); P=0.005] and admission platelet count [aOR (95% CI): 1.69 (1.01, 2.84); P=0.043] were the predictors of 28 day mortality [model area under the receiver operating characteristics (AUROC) 0.81]. APACHE II [aOR (95% CI): 0.88 (0.81, 0.97); P=0.013], CFB [a OR (95% CI): 0.99977 (0.99962, 0.99993); P=0.044] and transfusion trigger [aOR (95% CI): 3 (1.07, 8.34); P=0.035] were the predictors of 90 day mortality (model AUROC: 0.82). Interpretation & conclusions: In sepsis, patients admitted to the ICU, current practice suggests transfusion trigger is below 7 g/dl and it does not affect any adverse outcome including 28 day mortality.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/epidemiologia , Choque Séptico/terapia , Estudos Prospectivos , Estado Terminal , Sepse/terapia , Hemoglobinas/análise , Unidades de Terapia Intensiva , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA