Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mutat ; 37(5): 439-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26842889

RESUMO

Whole-exome sequencing (WES) is increasingly applied to research and clinical diagnosis of human diseases. It typically results in large amounts of genetic variations. Depending on the mode of inheritance, only one or two correspond to pathogenic mutations responsible for the disease and present in affected individuals. Therefore, it is crucial to filter out nonpathogenic variants and limit downstream analysis to a handful of candidate mutations. We have developed a new computational combinatorial system UMD-Predictor (http://umd-predictor.eu) to efficiently annotate cDNA substitutions of all human transcripts for their potential pathogenicity. It combines biochemical properties, impact on splicing signals, localization in protein domains, variation frequency in the global population, and conservation through the BLOSUM62 global substitution matrix and a protein-specific conservation among 100 species. We compared its accuracy with the seven most used and reliable prediction tools, using the largest reference variation datasets including more than 140,000 annotated variations. This system consistently demonstrated a better accuracy, specificity, Matthews correlation coefficient, diagnostic odds ratio, speed, and provided the shortest list of candidate mutations for WES. Webservices allow its implementation in any bioinformatics pipeline for next-generation sequencing analysis. It could benefit to a wide range of users and applications varying from gene discovery to clinical diagnosis.


Assuntos
Substituição de Aminoácidos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Genéticas , Exoma , Predisposição Genética para Doença , Humanos , Mutação Puntual
2.
Hum Mutat ; 37(12): 1308-1317, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27647783

RESUMO

High-throughput next-generation sequencing such as whole-exome and whole-genome sequencing are being rapidly integrated into clinical practice. The use of these techniques leads to the identification of secondary variants for which decisions about the reporting or not to the patient need to be made. The American College of Medical Genetics and Genomics recently published recommendations for the reporting of these variants in clinical practice for 56 "actionable" genes. Among these, seven are involved in Marfan Syndrome And Related Disorders (MSARD) resulting from mutations of the FBN1, TGFBR1 and 2, ACTA2, SMAD3, MYH11 and MYLK genes. Here, we show that mutations collected in UMD databases for MSARD genes (UMD-MSARD) are rarely reported, including the most frequent ones, in global scale initiatives for variant annotation such as the NHLBI GO Exome Sequencing Project (ESP), the Exome Aggregation Consortium (ExAC), and ClinVar. The predicted pathogenic mutations reported in global scale initiatives but absent in locus-specific databases (LSDBs) mainly correspond to rare events. UMD-MSARD databases are therefore the only resources providing access to the full spectrum of known pathogenic mutations. They are the most comprehensive resources for clinicians and geneticists to interpret MSARD-related variations not only primary variants but also secondary variants.


Assuntos
Doenças Cardiovasculares/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Exoma , Predisposição Genética para Doença , Genoma Humano , Genômica/métodos , Humanos , Bases de Conhecimento
3.
Hum Mutat ; 37(12): 1318-1328, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27633797

RESUMO

As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Bases de Dados Factuais , Neoplasias Ovarianas/genética , Curadoria de Dados , Bases de Dados Factuais/economia , Feminino , Predisposição Genética para Doença , Humanos , Mutação
4.
Hum Mutat ; 35(12): 1532-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312915

RESUMO

Missense, iso-semantic, and intronic mutations are challenging for interpretation, in particular for their impact in mRNA. Various tools such as the Human Splicing Finder (HSF) system could be used to predict the impact on splicing; however, no diagnosis result could rely on predictions alone, but requires functional testing. Here, we report an in vitro approach to study the impact of DYSF mutations on splicing. It was evaluated on a series of 45 DYSF mutations, both intronic and exonic. We confirmed splicing alterations for all intronic mutations localized in 5' or 3' splice sites. Then, we showed that DYSF missense mutations could also result in splicing defects: mutations c.463G>A and c.2641A>C abolished ESEs and led to exon skipping; mutations c.565C>G and c.1555G>A disrupted Exonic Splicing Enhancer (ESE), while concomitantly creating new 5' or 3' splice site leading to exonic out of frame deletions. We demonstrated that 20% of DYSF missense mutations have a strong impact on splicing. This minigene strategy is an efficient tool for the detection of splicing defects in dysferlinopathies, which could allow for a better comprehension of splicing defects due to mutations and could improve prediction tools evaluating splicing defects.


Assuntos
Proteínas de Membrana/genética , Proteínas Musculares/genética , Mutação , Splicing de RNA/genética , Disferlina , Humanos
6.
Front Immunol ; 7: 443, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833609

RESUMO

Reported synonymous substitutions are generally non-pathogenic, and rare pathogenic synonymous variants may be disregarded unless there is a high index of suspicion. In a case of IL7 receptor deficiency severe combined immunodeficiency (SCID), the relevance of a non-reported synonymous variant was only suspected through the use of additional in silico computational tools, which focused on the impact of mutations on gene splicing. The pathogenic nature of the variant was confirmed using experimental validation of the effect on mRNA splicing and IL7 pathway function. This case reinforces the need to use additional experimental methods to establish the functional impact of specific mutations, in particular for cases such as SCID where prompt diagnosis can greatly impact on diagnosis, treatment, and survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA