Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 259(6): 144, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709333

RESUMO

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Assuntos
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estresse Oxidativo , Fosfatos , Fotossíntese , Raízes de Plantas , Silício , Hordeum/metabolismo , Hordeum/genética , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Silício/farmacologia , Silício/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/fisiologia
2.
Plant Cell Physiol ; 63(12): 1954-1967, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36377808

RESUMO

Developments in the field of nanotechnology over the past few years have increased the prevalence of silver nanoparticles (AgNPs) in the environment, resulting in increased exposure of plants to AgNPs. Recently, various studies have reported the effect of AgNPs on plant growth at different concentrations. However, identifying the mechanisms and signaling molecules involved in plant responses against AgNPs stress is crucial to find an effective way to deal with the phytotoxic impacts of AgNPs on plant growth and development. Therefore, this study was envisaged to investigate the participation of ethylene in mediating the activation of AgNPs stress tolerance in rice (Oryza sativa L.) through a switch that regulates endogenous nitric oxide (NO) accumulation. Treatment of AgNPs alone hampered the growth of rice seedlings due to severe oxidative stress as a result of decline in sulfur assimilation, glutathione (GSH) biosynthesis and alteration in the redox status of GSH. These results are also accompanied by the higher endogenous NO level. However, addition of ethephon (a donor of ethylene) reversed the AgNP-induced effects. Though the application of silicon nanoparticles (SiNPs) alone promoted the growth of rice seedlings but, interestingly their application in combination with AgNPs enhanced the AgNP-induced toxicity in the seedlings through the same routes as exhibited in the case of AgNPs alone treatment. Interestingly, addition of ethephon reversed the negative effects of SiNPs under AgNPs stress. These results suggest that ethylene might act as a switch to regulate the level of endogenous NO, which in turn could be associated with AgNPs stress tolerance in rice. Furthermore, the results also indicated that addition of l-NG-nitro arginine methyl ester (l-NAME) (an inhibitor of endogenous NO synthesis) also reversed the toxic effects of SiNPs together with AgNPs, further suggesting that the low level of endogenous NO was associated with AgNPs stress tolerance. Overall, the results indicate that the low level of endogenous NO triggers AgNPs stress tolerance, while high level leads to AgNPs toxicity by regulating sulfur assimilation, GSH biosynthesis, redox status of GSH and oxidative stress markers. The results revealed that ethylene might act as a switch for regulating AgNPs stress in rice seedlings by controlling endogenous NO accumulation.


Assuntos
Nanopartículas Metálicas , Oryza , Plântula/metabolismo , Óxido Nítrico , Oryza/fisiologia , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio , Estresse Oxidativo , Glutationa/metabolismo , Plantas/metabolismo , Etilenos/farmacologia , Enxofre
3.
Plant Cell Physiol ; 63(12): 1943-1953, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36264202

RESUMO

Along with the rapidly increasing environmental contamination by heavy metals, the exposure of plants to chromium has also magnified, resulting in a declined productivity. Hexavalent chromium [Cr(VI)], the most toxic form of Cr, brings about changes in plant processes at morpho-physiological and biochemical levels. However, silicon (Si) is known to mitigate the impact of abiotic stresses in plants. Here, we demonstrate Si-mediated alleviation of Cr(VI) toxicity and its effects on root hair formation in rice seedlings. Reduced glutathione (GSH) and indole-3 acetic acid (IAA, an important auxin) were assessed for their involvement in root hair formation after the application of Si to Cr(VI)-stressed plants, and our results confirmed their crucial significance in such developmental processes. The expression analysis of genes involved in GSH biosynthesis (OsGS2) and regeneration (OsGR1), and auxin biosynthesis (OsTAA1 and OsYUCCA1) and transport (OsAUX1 and OsPIN1) corroborated their positive role in Si-mediated root hair formation in Cr(VI)-stressed rice seedlings. Moreover, the results indicated that nitric oxide (NO) seems a probable but not fundamental component in Si-mediated formation of roots in rice during exposure to Cr(VI) stress. In this study, the indispensable role of GSH and IAA, redox homeostasis of GSH and IAA biosynthesis and transport are discussed with regard to Si-mediated formation of root hairs in rice under Cr(VI) stress. The results of the study suggest that Si is a protective agent against Cr(VI) stress in rice, and the findings can be used to develop Cr(VI) stress-tolerant varieties of rice with enhanced productivity.


Assuntos
Oryza , Oryza/metabolismo , Silício/farmacologia , Silício/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Plântula/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
4.
J Exp Bot ; 72(12): 4457-4471, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33095869

RESUMO

Arsenic (As) negatively affects plant development. This study evaluates how the application of silicon (Si) can favor the formation of adventitious roots in rice under arsenate stress (AsV) as a mechanism to mitigate its negative effects. The simultaneous application of AsV and Si up-regulated the expression of genes involved in nitric oxide (NO) metabolism, cell cycle progression, auxin (IAA, indole-3-acetic acid) biosynthesis and transport, and Si uptake which accompanied adventitious root formation. Furthermore, Si triggered the expression and activity of enzymes involved in ascorbate recycling. Treatment with L-NAME (NG-nitro L-arginine methyl ester), an inhibitor of NO generation, significantly suppressed adventitious root formation, even in the presence of Si; however, supplying NO in the growth media rescued its effects. Our data suggest that both NO and IAA are essential for Si-mediated adventitious root formation under AsV stress. Interestingly, TIBA (2,3,5-triiodobenzoic acid), a polar auxin transport inhibitor, suppressed adventitious root formation even in the presence of Si and SNP (sodium nitroprusside, an NO donor), suggesting that Si is involved in a mechanism whereby a cellular signal is triggered and that first requires NO formation, followed by IAA biosynthesis.


Assuntos
Oryza , Arseniatos , Ácidos Indolacéticos , Óxido Nítrico , Raízes de Plantas , Silício/farmacologia
5.
Physiol Plant ; 168(2): 473-489, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31747051

RESUMO

Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.


Assuntos
Óxido Nítrico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ácidos Indolacéticos , Plantas
6.
Plant Physiol Biochem ; 215: 109001, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213945

RESUMO

Seed priming by nitric oxide (NO) and hydrogen sulphide (H2S) in combating against abiotic stress in plants is well documented. However, knowledge of fundamental mechanisms of their crosstalk is scrambled. Therefore, the reported study examined the probable role of NO and H2S in the mitigation of arsenate toxicity (As(V)) in rice seedlings and whether their potential signalling routes crossover. Results report that As(V) toxicity limited shoot and root length growth with more As accumulation in roots. As(V) further caused elevated reactive oxygen species levels, inhibited ascorbate-glutathione cycle enzymes and relative gene expression of its enzymes and thus, causing lipid and protein oxidation. These results correlate with reduced nitric oxide synthase-like and L-cysteine desulfhydrase activity along with endogenous NO and H2S. While, L-NAME or PAG augmented As(V) toxicity, and addition of SNP or NaHS effectively reversed their respective effects. Furthermore, SNP under PAG or NaHS under L-NAME were able to pacify As(V) stress, implicating that endogenous NO and H2S efficiently ameliorate As(V) toxicity but without their shared signaling in rice seedlings.


Assuntos
Arseniatos , Ácido Ascórbico , Glutationa , Sulfeto de Hidrogênio , Óxido Nítrico , Oryza , Plântula , Enxofre , Oryza/metabolismo , Oryza/genética , Oryza/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Arseniatos/toxicidade , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Enxofre/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/genética
7.
Plant Physiol Biochem ; 213: 108720, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901227

RESUMO

Silver Nanoparticles (AgNPs), as an emerging pollutant, have been receiving significant attention as they deepen the concern regarding the issue of food security. Silicon (Si) and plant growth-promoting rhizobacteria (PGPR) are likely to serve as a sustainable approach to ameliorating abiotic stress and improving plant growth through various mechanisms. The present study aims to evaluate the synergistic effect of Si and PGPRs on growth, physiological, and molecular response in rice seedlings (Oryza sativa) under AgNPs stress. Data suggested that under AgNPs exposure, the root and shoot growth, photosynthetic pigments, antioxidant enzymes (CAT and APX), expression of antioxidant genes (OsAPX and OsGR), silicon transporter (OsLsi2), and auxin hormone-related genes (OsPIN10 and OsYUCCA1) were significantly decreased which accompanied with the overproduction of reactive oxygen species (ROS), nitric oxide (NO) and might be due to higher accumulation of Ag in plant cells. Interestingly, the addition of Si along with the AgNPs enhances the level of ROS generation, thus oxidative stress, which causes severe damage in all the above-tested parameters. On the other hand, application of PGPR alone and along with Si reduced the toxic effect of AgNPs through the improvement of growth, biochemical, and gene regulation (OsAPX and OsGR, OsPIN10 and OsYUCCA1). However, the addition of L-NAME along with PGPR and silicon drastically lowered the AgNPs induced toxicity through lowering the oxidative stress and maintained the overall growth of rice seedlings, which suggests the role of endogenous NO in Si and PGPRs mediated management of AgNPs toxicity in rice seedlings.


Assuntos
Nanopartículas Metálicas , Oryza , Plântula , Silício , Prata , Oryza/microbiologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Silício/farmacologia , Prata/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/metabolismo , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
8.
J Hazard Mater ; 468: 133134, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387171

RESUMO

The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.


Assuntos
Plântula , Ácidos Tri-Iodobenzoicos , Triticum , Triticum/metabolismo , Silício/farmacologia , Citocininas/farmacologia , Citocininas/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Ácidos Indolacéticos/farmacologia , Prolina/metabolismo , Prolina/farmacologia , Estresse Oxidativo
9.
Environ Pollut ; 335: 122031, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419203

RESUMO

Hyperaccumulation of heavy metal in agricultural land has hampered yield of important crops globally. It has consequently deepened concerns regarding the burning issue of food security in the world. Among heavy metals, Chromium (Cr) is not needed for plant growth and found to pose detrimental effects on plants. Present study highlights the role of exogenous application of sodium nitroprusside (SNP, exogenous donor of NO) and silicon (Si) in alleviating detrimental ramification of Cr toxicity in Brassica juncea. The exposure of B. juncea to Cr (100 µM) under hydroponic system hampered the morphological parameters of plant growth like length and biomass and physiological parameters like carotenoid and chlorophyll contents. It also resulted in oxidative stress by disrupting the equilibrium between ROS production and antioxidant quenching leading to accumulation of ROS such as hydrogen peroxide (H2O2) and superoxide (O2•‾) radicle which causes lipid peroxidation. However, application of Si and SNP both individually and in combination counteracted oxidative stress due to Cr by regulating ROS accumulation and enhancing antioxidant metabolism by upregulation of antioxidant genes of DHAR, MDHAR, APX and GR. As the alleviatory effects were more pronounced in plants treated with combined application of Si and SNP; therefore, our findings suggest that dual application of these two alleviators can be used to mitigate Cr stress.


Assuntos
Antioxidantes , Mostardeira , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mostardeira/metabolismo , Silício/farmacologia , Silício/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo
10.
Plant Sci ; 337: 111783, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37421983

RESUMO

In this study, the interaction between zinc (Zn) and cadmium (Cd) was investigated in rice roots to evaluate how Zn can protect the plants from Cd stress. Rice seedlings were treated with Cd (100 µM) and Zn (100 µM) in different combinations (Cd alone, Zn alone, Zn+ Cd, Zn+ Cd+ L-NAME, Zn+ Cd+ L-NAME+ SNP). Rice roots treated with only Zn also displayed similar toxic effects, however when combined with Cd exhibited improved growth. Treating the plant with Zn along with Cd distinctly reduced Cd concentration in roots while increasing its own accumulation due to modulation in expression of Zinc-Regulated Transporter (ZRT)-/IRT-Like Protein (OsZIP1) and Plant Cadmium Resistance1 (OsPCR1). Cd reduced plant biomass, cell viability, pigments, photosynthesis and causing oxidative stress due to inhibition in ascorbate-glutathione cycle. L-NAME (NG-nitro L-arginine methyl ester), prominently suppressed the beneficial impacts of Zn against Cd stress, whereas the presence of a NO donor, sodium nitroprusside (SNP), significantly reversed this effect of L-NAME. Collectively, results point that NO signalling is essential for Zn- mediated cross-tolerance against Cd stress via by modulating uptake of Cd and Zn and expression of OsZIP1 and OsPCR1, and ROS homeostasis due to fine tuning of ascorbate-glutathione cycle which finally lessened oxidative stress in rice roots. The results of this study can be utilized to develop new varieties of rice through genetic modifications which will be of great significance for maintaining crop productivity in Cd-contaminated areas throughout the world.

11.
Environ Pollut ; 307: 119320, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490999

RESUMO

The growth and development patterns of crop plants are being seriously threatened by arsenic (As) contamination in the soil, and it also acts as a major hurdle in crop productivity. This study focuses on arsenate As(V) mediated toxicity in rice plants. Further, among the different type of NPs, iron oxide nanoparticles (FeO NPs) display a dose-dependent effect but their potential role in mitigating As(V) stress is still elusive. FeO NPs (500 µM) play a role in imparting cross-tolerance against As(V) induced toxicity in rice. Growth attributes, photosynthetic performance, nutrient contents and biochemical parameters were significantly altered by As(V). But FeO NPs rescued the negative consequences of As(V) by restricting its entry with the possible involvement of NO in rice roots. Moreover, results related with gene expression of NO(OsNoA1 and OsNIA1) and proline metabolism were greatly inhibited by As(V) toxicity. But, FeO NPs reversed the toxic effect of As(V) by improving proline metabolism and stimulating NO mediated up-regulation of antioxidant enzymes particularly glutathione-S-transferase which may be possible reasons for the reduction of As(V) toxicity in rice roots. Overall, it can be stated that FeO NPs may act as an As(V) barrier to restrict the As(V) uptake by roots and have the ability to confer cross tolerance by modulating various morphological, biochemical and molecular characteristics with possible intrinsic involvement of NO.


Assuntos
Arsênio , Oryza , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Óxido Nítrico/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Plântula
12.
Chemosphere ; 303(Pt 1): 134554, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35405200

RESUMO

Chromium toxicity impairs the productivity of rice crops and raises a major concern worldwide and thus, it calls for unconventional and sustainable means of crop production. In this study, we identified the implication of zinc oxide nanoparticles (ZnO NPs) in promoting plant growth and ameliorating chromium-induced stress in seedlings of rice (Oryza sativa). This investigation demonstrates that the exogenous supplementation of ZnO NPs at 25 µM activates defense mechanisms conferring rice seedlings significant tolerance against stress imposed by the exposure of 100 µM Cr(VI). Further, supplementation of this nanofertilizer reversed the inhibitory effects of Cr(VI) on growth and photosynthetic efficiency. The growth promotion was primarily associated with the function of ZnO NPs in inducing activity of antioxidative enzymes i.e. APX, DHAR, MDHAR and GR belonging to the ascorbate-glutathione cycle in the Cr-exposed seedlings, exceeding the levels in control. The overexpression of these antioxidative genes correlated concomitantly with the decrease of oxidants including SOR and H2O2 and the increase in the levels of non-enzymatic antioxidants: AsA and GSH.


Assuntos
Nanopartículas , Oryza , Óxido de Zinco , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cromo/toxicidade , Suplementos Nutricionais , Fertilizantes , Peróxido de Hidrogênio/farmacologia , Nanopartículas/toxicidade , Oryza/fisiologia , Estresse Oxidativo , Plântula , Óxido de Zinco/toxicidade
13.
J Hazard Mater ; 415: 124907, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088169

RESUMO

Nanoparticle-pollution has associated severe negative effects on crop productivity. Hence, methods are needed to alleviate nano-toxicity in crop plants. The present study aims to evaluate if the exogenous hydrogen sulfide (H2S) application in combination with silicon (Si) could palliate the harmful effects of copper oxide nanoparticles (CuO NPs). Fifteen day-old rice (Oryza sativa L.) seedlings were used as a model plant. The results indicate that simultaneous exogenous addition of 10 µM Si and 100 µM NaHS (as an H2S donor) provided tolerance and enhanced defence mechanism of the rice seedlings against 100 µM CuO NPs. Thus, it was observed in terms of their growth, photosynthetic pigments, antioxidant enzyme activities, the content of non-enzymatic components, chlorophyll fluorescence and up-regulation of antioxidant genes. Si and NaHS stimulated gene expression of silicon (Lsi1 and Lsi2) and auxin (PIN5 and PIN10) transporters. Taken together, data indicate that H2S underpins the beneficial Si effects in rice seedlings against the oxidative stress triggers by CuO NPs, and stimulation of enzymatic components of the ascorbate-glutathione cycle being the main factor for the beneficial effects triggered by the couple of Si and H2S. Therefore, it could be concluded that the simultaneous application of Si and H2S promote the resilience of the rice seedlings against the oxidative stress induced by CuO NPs.


Assuntos
Sulfeto de Hidrogênio , Nanopartículas , Oryza , Cobre/toxicidade , Sulfeto de Hidrogênio/toxicidade , Nanopartículas/toxicidade , Óxidos , Plântula , Silício/toxicidade
14.
Plant Physiol Biochem ; 167: 705-712, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34500195

RESUMO

Uncontrolled application of herbicides in the agricultural field poses a severe risk to crops by affecting their yields. Therefore, methods are required to reduce the toxic effects of herbicides in plants. Studies indicate that silicon (Si) provides tolerance and enhances defence mechanism of the plant against abiotic stress. But its role in alleviating Metsulfuron methyl (Meth) herbicide induced toxicity in wheat seedlings is still not known. This study highlighted the potential of exogenous addition of Si in the alleviation of toxic effect of Meth herbicide in wheat seedlings. The exposure of wheat seedlings to Meth herbicide reduced the growth, photosynthetic pigments, antioxidant enzyme activity and nitric oxide (NO) content. Further, Meth herbicide also increased cell death and decreased cell viability in root tips. However, addition of Si reversed Meth-induced these alterations. Moreover, Si also activates antioxidant system which helps in scavenging of free radicals generated under Meth herbicide stress in wheat seedlings. Application of Si to Meth treated wheat seedlings also up-regulated silicon transporter gene Lsi1 (silicon influx transporter) and some of the antioxidant enzyme genes. All together, the data indicate that Si has capability of alleviating Meth herbicide stress in wheat seedlings but it appears that endogenous NO has a positive role in this endeavour of Si.


Assuntos
Plântula , Triticum , Antioxidantes , Sulfonatos de Arila/farmacologia , Estresse Oxidativo , Silício/farmacologia
15.
3 Biotech ; 9(3): 68, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30729092

RESUMO

Use of nanomaterials in the field of science and technology includes different fields in food industry, medicine, agriculture and cosmetics. Nanoparticle-based sensors have wide range of applications in food industry for identification and detection of chemical contaminants, pathogenic bacteria, toxins and fungal toxins from food materials with high specificity and sensitivity. Nanoparticle-microbe interactions play a significant role in disease treatment in the form of antimicrobial agents. The inhibitory mechanism of nanoparticles against different bacteria and fungi includes release of metal ions that interacts with cellular components through various pathways including reactive oxygen species (ROS) generation, pore formation in cell membranes, cell wall damage, DNA damage, and cell cycle arrest and ultimately inhibits the growth of cells. Nanoparticle-based therapies are growing to study the therapeutic treatments of plant diseases and to prevent the growth of phytopathogens leading to the growing utilization of engineered nanomaterials. Hence, with this background, the present review focuses thoroughly on detailed actions and responses of nanomaterials against different bacteria and fungi as well as food sensing and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA