Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(8): 1364-1374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38787806

RESUMO

BACKGROUND: Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive brain stimulation (NIBS) technique with high spatial specificity. Previous studies showed that TUS delivered in a theta burst pattern (tbTUS) increased motor cortex (MI) excitability up to 30 minutes due to long-term potentiation (LTP)-like plasticity. Studies using other forms of NIBS suggested that cortical plasticity may be impaired in patients with Parkinson's disease (PD). OBJECTIVE: The aim was to investigate the neurophysiological effects of tbTUS in PD patients off and on dopaminergic medications compared to healthy controls. METHODS: We studied 20 moderately affected PD patients in on and off dopaminergic medication states (7 with and 13 without dyskinesia) and 17 age-matched healthy controls in a case-controlled study. tbTUS was applied for 80 seconds to the MI. Motor-evoked potentials (MEP), short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were recorded at baseline, and at 5 minutes (T5), T30, and T60 after tbTUS. Motor Unified Parkinson's Disease Rating Scale (mUPDRS) was measured at baseline and T60. RESULTS: tbTUS significantly increased MEP amplitude at T30 compared to baseline in controls and in PD patients on but not in PD patients off medications. SICI was reduced in PD off medications compared to controls. tbTUS did not change in SICI or SICF. The bradykinesia subscore of mUPDRS was reduced at T60 compared to baseline in PD on but not in the off medication state. The presence of dyskinesia did not affect tbTUS-induced plasticity. CONCLUSIONS: tbTUS-induced LTP plasticity is impaired in PD patients off medications and is restored by dopaminergic medications. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Potencial Evocado Motor , Córtex Motor , Plasticidade Neuronal , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Potencial Evocado Motor/fisiologia , Potencial Evocado Motor/efeitos dos fármacos , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Estudos de Casos e Controles , Estimulação Magnética Transcraniana/métodos , Ritmo Teta/fisiologia
2.
Cerebellum ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172206

RESUMO

Working memory refers to the process of temporarily storing and manipulating information. The role of the cerebellum in working memory is thought to be achieved through its connections with the prefrontal cortex. Previous studies showed that theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation, of the cerebellum changes its functional connectivity with the prefrontal cortex. Specifically, excitatory intermittent TBS (iTBS) increases, whereas inhibitory continuous TBS (cTBS) decreases this functional connectivity. We hypothesized that iTBS on the cerebellum will improve working memory, whereas cTBS will disrupt it. Sixteen healthy participants (10 women) participated in this study. Bilateral cerebellar stimulation was applied with a figure-of-eight coil at 3 cm lateral and 1 cm below the inion. The participants received iTBS, cTBS, and sham iTBS in three separate sessions in random order. Within 30 min after TBS, the participants performed four working memory tasks: letter 1-Back and 2-Back, digit span forward, and digit span backward. Repeated measures analysis of variance revealed a significant effect of the type of stimulation (iTBS/cTBS/Sham) on performance in the digit span backward task (p = 0.02). The planned comparison showed that the cTBS condition had significantly lower scores than the sham condition (p = 0.01). iTBS and cTBS did not affect performance in the 1- and 2-Back and the digit span forward tasks compared to sham stimulation. The findings support the hypothesis that the cerebellum is involved in working memory, and this contribution may be disrupted by cTBS.

3.
Neurotherapeutics ; 21(3): e00330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340524

RESUMO

Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.


Assuntos
Estimulação Encefálica Profunda , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos , Estimulação Encefálica Profunda/métodos , Estimulação Magnética Transcraniana/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação da Medula Espinal/métodos , Estimulação do Nervo Vago/métodos , Estimulação do Nervo Vago/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA