Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 546(7657): 297-301, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28562592

RESUMO

Adult pair bonding involves dramatic changes in the perception and valuation of another individual. One key change is that partners come to reliably activate the brain's reward system, although the precise neural mechanisms by which partners become rewarding during sociosexual interactions leading to a bond remain unclear. Here we show, using a prairie vole (Microtus ochrogaster) model of social bonding, how a functional circuit from the medial prefrontal cortex to nucleus accumbens is dynamically modulated to enhance females' affiliative behaviour towards a partner. Individual variation in the strength of this functional connectivity, particularly after the first mating encounter, predicts how quickly animals begin affiliative huddling with their partner. Rhythmically activating this circuit in a social context without mating biases later preference towards a partner, indicating that this circuit's activity is not just correlated with how quickly animals become affiliative but causally accelerates it. These results provide the first dynamic view of corticostriatal activity during bond formation, revealing how social interactions can recruit brain reward systems to drive changes in affiliative behaviour.


Assuntos
Arvicolinae/fisiologia , Arvicolinae/psicologia , Núcleo Accumbens/fisiologia , Ligação do Par , Córtex Pré-Frontal/fisiologia , Recompensa , Comportamento Social , Animais , Feminino , Masculino , Preferência de Acasalamento Animal/fisiologia , Núcleo Accumbens/citologia , Córtex Pré-Frontal/citologia , Fatores de Tempo
2.
Neurobiol Dis ; 124: 520-530, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30593834

RESUMO

Adolescence represents a critical period of neurodevelopment, defined by structural and synaptic pruning within the prefrontal cortex. While characteristic of typical development, this structural instability may open a window of vulnerability to developing neuropsychiatric disorders, including depression. Thus, therapeutic interventions that support or expedite neural remodeling in adolescence may be advantageous. Here, we inhibited the neuronally-expressed cytoskeletal regulatory factor Rho-kinase (ROCK), focusing primarily on the clinically-viable ROCK inhibitor fasudil. ROCK inhibition had rapid antidepressant-like effects in adolescent mice, and its efficacy was comparable to ketamine and fluoxetine. It also modified levels of the antidepressant-related signaling factors, tropomyosin/tyrosine receptor kinase B and Akt, as well as the postsynaptic marker PSD-95, in the ventromedial prefrontal cortex (vmPFC). Meanwhile, adolescent-typical dendritic spine pruning on excitatory pyramidal neurons in the vmPFC was expedited. Further, vmPFC-specific shRNA-mediated reduction of ROCK2, the dominant ROCK isoform in the brain, had antidepressant-like consequences. We cautiously suggest that ROCK inhibitors may have therapeutic potential for adolescent-onset depression.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Antidepressivos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/enzimologia , Inibidores de Proteínas Quinases/farmacologia
3.
Proc Natl Acad Sci U S A ; 109(40): 16330-5, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22992651

RESUMO

Corticotropin-releasing factor (CRF) is critical for the endocrine, autonomic, and behavioral responses to stressors, and it has been shown to modulate fear and anxiety. The CRF receptor is widely expressed across a variety of cell types, impeding progress toward understanding the contribution of specific CRF-containing neurons to fear dysregulation. We used a unique CRF-Cre driver transgenic mouse line to remove floxed GABA(A)α1 subunits specifically from CRF neurons [CRF-GABA(A)α1 KO]. This process resulted in mice with decreased GABA(A)α1 expression only in CRF neurons and increased CRF mRNA within the amygdala, bed nucleus of the stria terminalis (BNST) and paraventricular nucleus of the hypothalamus. These mice show normal locomotor and pain responses and no difference in depressive-like behavior or Pavlovian fear conditioning. However, CRF-GABA(A)α1 KO increased anxiety-like behavior and impaired extinction of conditioned fear, coincident with an increase in plasma corticosterone concentration. These behavioral impairments were rescued with systemic or BNST infusion of the CRF antagonist R121919. Infusion of Zolpidem, a GABA(A)α1-preferring benzodiazepine-site agonist, into the BNST of the CRF-GABA(A)α1 KO was ineffective at decreasing anxiety. Electrophysiological findings suggest a disruption in inhibitory current may play a role in these changes. These data indicate that disturbance of CRF containing GABA(A)α1 neurons causes increased anxiety and impaired fear extinction, both of which are symptoms diagnostic for anxiety disorders, such as posttraumatic stress disorder.


Assuntos
Ansiedade/fisiopatologia , Hormônio Liberador da Corticotropina/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/deficiência , Análise de Variância , Animais , Ansiedade/metabolismo , Condicionamento Psicológico/fisiologia , Corticosterona/sangue , Primers do DNA/genética , Hibridização In Situ , Hibridização in Situ Fluorescente , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Piridinas , Pirimidinas , Receptores de GABA-A/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zolpidem
4.
J Neurosci ; 33(25): 10396-404, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23785152

RESUMO

Research has identified distinct neuronal circuits within the basolateral amygdala (BLA) that differentially mediate fear expression versus inhibition; however, molecular markers of these populations remain unknown. Here we examine whether optogenetic activation of a cellular subpopulation, which may correlate with the physiologically identified extinction neurons in the BLA, would differentially support fear conditioning versus fear inhibition/extinction. We first molecularly characterized Thy1-channelrhodopsin-2 (Thy1-ChR2-EYFP)-expressing neurons as a subpopulation of glutamatergic pyramidal neurons within the BLA. Optogenetic stimulation of these neurons inhibited a subpopulation of medial central amygdala neurons and shunted excitation from the lateral amygdala. Brief activation of these neurons during fear training disrupted later fear memory in male mice. Optogenetic activation during unreinforced stimulus exposure enhanced extinction retention, but had no effect on fear expression, locomotion, or open-field behavior. Together, these data suggest that the Thy1-expressing subpopulation of BLA pyramidal neurons provide an important molecular and pharmacological target for inhibiting fear and enhancing extinction and for furthering our understanding of the molecular mechanisms of fear processing.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Inibição Psicológica , Neurônios/fisiologia , Antígenos Thy-1/fisiologia , Tonsila do Cerebelo/citologia , Animais , Channelrhodopsins , Condicionamento Psicológico , Sinais (Psicologia) , Extinção Psicológica , Ácido Glutâmico/fisiologia , Imuno-Histoquímica , Lasers , Locomoção/fisiologia , Camundongos , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Antígenos Thy-1/genética
5.
J Physiol ; 592(19): 4329-51, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25107924

RESUMO

Competing mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in principal neurons of the basolateral amygdala (BLA) are thought to underlie the acquisition and consolidation of fear memories, and their subsequent extinction. However, no study to date has examined the locus of action and/or the cellular mechanism(s) by which these processes interact. Here, we report that synaptic plasticity in the cortical pathway onto BLA principal neurons is frequency-dependent and shows a transition from LTD to LTP at stimulation frequencies of ∼10 Hz. At the crossover point from LTD to LTP induction we show that concurrent activation of D1 and group II metabotropic glutamate (mGluR2/3) receptors act to nullify any net change in synaptic strength. Significantly, blockade of either D1 or mGluR2/3 receptors unmasked 10 Hz stimulation-induced LTD and LTP, respectively. Significantly, prior activation of presynaptic D1 receptors caused a time-dependent attenuation of mGluR2/3-induced depotentiation of previously induced LTP. Furthermore, studies with cell type-specific postsynaptic transgene expression of designer receptors activated by designer drugs (DREADDs) suggest that the interaction results via bidirectional modulation of adenylate cyclase activity in presynaptic glutamatergic terminals. The results of our study raise the possibility that the temporal sequence of activation of either presynaptic D1 receptors or mGluR2/3 receptors may critically regulate the direction of synaptic plasticity in afferent pathways onto BLA principal neurons. Hence, the interaction of these two neurotransmitter systems may represent an important mechanism for bidirectional metaplasticity in BLA circuits and thus modulate the acquisition and extinction of fear memory.


Assuntos
Tonsila do Cerebelo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos
6.
J Neurophysiol ; 110(4): 926-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23719209

RESUMO

Many psychiatric disorders, including anxiety and autism spectrum disorders, have early ages of onset and high incidence in juveniles. To better treat and prevent these disorders, it is important to first understand normal development of brain circuits that process emotion. Healthy and maladaptive emotional processing involve the basolateral amygdala (BLA), dysfunction of which has been implicated in numerous psychiatric disorders. Normal function of the adult BLA relies on a fine balance of glutamatergic excitation and GABAergic inhibition. Elsewhere in the brain GABAergic transmission changes throughout development, but little is known about the maturation of GABAergic transmission in the BLA. Here we used whole cell patch-clamp recording and single-cell RT-PCR to study GABAergic transmission in rat BLA principal neurons at postnatal day (P)7, P14, P21, P28, and P35. GABAA currents exhibited a significant twofold reduction in rise time and nearly 25% reduction in decay time constant between P7 and P28. This corresponded with a shift in expression of GABAA receptor subunit mRNA from the α2- to the α1-subunit. The reversal potential for GABAA receptors transitioned from depolarizing to hyperpolarizing with age, from around -55 mV at P7 to -70 mV by P21. There was a corresponding shift in expression of opposing chloride pumps that influence the reversal, from NKCC1 to KCC2. Finally, we observed short-term depression of GABAA postsynaptic currents in immature neurons that was significantly and gradually abolished by P28. These findings reveal that in the developing BLA GABAergic transmission is highly dynamic, reaching maturity at the end of the first postnatal month.


Assuntos
Tonsila do Cerebelo/crescimento & desenvolvimento , Potenciais Pós-Sinápticos Inibidores , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley
7.
J Nutr Biochem ; 114: 109220, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36435289

RESUMO

The incidence of adolescent mental health disorders is on the rise. Epidemiological studies suggest that poor nutrition is a significant contributor to this public health crisis, specifically through exposure to high level of dietary sugar, including fructose, during critical periods of development. Previous studies have shown that elevated fructose exposure during adolescence disrupts mental health. Despite these data, it is currently unknown how fructose exposure, specifically during infancy, may impact adolescent mental health. We developed a rat experimental protocol to investigate the effects of fructose exposure during infancy on behavioral, cognitive and metabolic endpoints in adolescence. We found that exposing rats to high fructose from birth to weaning resulted in higher circulating glucose, insulin and leptin levels in adolescence. High fructose during infancy also increased bodyweight, disrupted metabolic homeostasis in the basolateral amygdala (BLA) as indicated by decreased activity of the cellular energy sensor AMPK, and impaired attention and impulsivity in a male-specific manner. This impaired attention observed in adolescent male rats following neonatal fructose exposure was partially rescued by viral-mediated, in vivo expression of a constitutively active form of AMPK in principal neurons of the BLA. Our results suggest that exposure to high level of fructose during infancy may impact adolescent mental health in a male-specific manner and that manipulation of AMPK activity may mitigate this impact.


Assuntos
Disfunção Cognitiva , Frutose , Feminino , Ratos , Animais , Masculino , Frutose/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta , Peso Corporal , Disfunção Cognitiva/etiologia
8.
Mol Cell Neurosci ; 46(4): 699-709, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21310239

RESUMO

The activity of neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) plays a critical role in anxiety- and stress-related behaviors. Histochemical studies have suggested that multiple distinct neuronal phenotypes exist in the BNST(ALG). Consistent with this observation, the physiological properties of BNST(ALG) neurons are also heterogeneous, and three distinct cell types can be defined (Types I-III) based primarily on their expression of four key membrane currents, namely I(h), I(A), I(T), and I(K(IR)). Significantly, all four channels are multimeric proteins and can comprise of more than one pore-forming α subunit. Hence, differential expression of α subunits may further diversify the neuronal population. However, nothing is known about the relative expression of these ion channel α subunits in BNST(ALG) neurons. We have addressed this lacuna by combining whole-cell patch-clamp recording together with single-cell reverse transcriptase polymerase chain reaction (scRT-PCR) to assess the mRNA transcript expression for each of the subunits for the four key ion channels in Type I-III neurons of the BNST(ALG.) Here, cytosolic mRNA from single neurons was probed for the expression of transcripts for each of the α subunits of I(h) (HCN1-HCN4), I(T) (Ca(v)3.1-Ca(v)3.3), I(A) (K(v)1.4, K(v)3.4, K(v)4.1-K(v) 4.3) and I(K(IR)) (Kir2.1-Kir2.4). An unbiased hierarchical cluster analysis followed by discriminant function analysis revealed that a positive correlation exists between the physiological and genetic phenotype of BNST(ALG) neurons. Thus, the analysis segregated BNST(ALG) neurons into 3 distinct groups, based on their α subunit mRNA expression profile, which positively correlated with our existing electrophysiological classification (Types I-III). Furthermore, analysis of mRNA transcript expression in Type I-Type III neurons suggested that, whereas Type I and III neurons appear to represent genetically homologous cell populations, Type II neurons may be further subdivided into three genetically distinct subgroups. These data not only validate our original classification scheme, but further refine the classification at the molecular level, and thus identifies novel targets for potential disruption and/or pharmacotherapeutic intervention in stress-related anxiety-like behaviors.


Assuntos
Perfilação da Expressão Gênica , Neurônios/classificação , Neurônios/fisiologia , Núcleos Septais/citologia , Animais , Análise por Conglomerados , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Neurônios/citologia , Neurotransmissores/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Brain Struct Funct ; 225(6): 1873-1888, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556583

RESUMO

Recognizing reward-related stimuli is crucial for survival. Neuronal projections from the basolateral amygdala (BLA) to the nucleus accumbens (NAc) play an important role in processing reward-related cues. Previous studies revealed synchronization between distant brain regions in reward-sensitive neurocircuits; however, whether the NAc synchronizes with the BLA is unknown. Here, we recorded local field potentials simultaneously from the BLA and NAc of rats during social preference tests and an appetitive conditioning test in which explicit stimuli were associated with food. BLA-NAc coherence in the theta band (5-8 Hz) increased in response to food-associated cues. Meanwhile, the modulatory strength of theta-high gamma (50-110 Hz) phase-amplitude cross-frequency coupling (PAC) in the NAc decreased. Importantly, both of these neuromodulations disappeared upon extinction. In contrast, both theta and gamma power oscillations in each region increased in the presence of social conspecifics or contexts associated with conspecifics, but coherence did not change. To potentially disrupt behavior and associated neural activity, a subgroup of rats was exposed prenatally to valproic acid (VPA), which has been shown to disrupt transcriptome and excitatory/inhibitory balance in the amygdala. VPA-exposed rats demonstrated impulsive-like behavior, but VPA did not affect BLA-NAc coherence. These findings reveal changes in BLA-NAc coherence in response to select reward-related stimuli (i.e., food-predictive cues); the differences between the tasks used here could shed light onto the functional nature of BLA-NAc coherence and are discussed.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Animais , Comportamento Apetitivo/fisiologia , Ondas Encefálicas , Extinção Psicológica/fisiologia , Feminino , Vias Neurais/fisiologia , Ratos Sprague-Dawley , Comportamento Social
10.
Methods Mol Biol ; 515: 199-213, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378132

RESUMO

It is often advantageous to identify and alter gene expression of specific cell populations within the brain. Currently, it is not possible to a priori identify specific cell types within the brain of rats for electrophysiological recordings, nor is it possible to routinely alter gene expression in specific cell types within the CNS of a variety of species. Here, we describe a general method for the relatively rapid screening of specific promoter activity in cell culture, in acute brain slice preparations, and in vivo. As an example, we describe the examination of an approximately 3 kb promoter region of the neuroactive peptide cholecystokinin (CCK) compared to the ubiquitous cytomegalovirus (CMV) promoter. We find a high degree of cell-type specificity in vivo using lentiviral approaches in rats and mice.


Assuntos
Fenômenos Eletrofisiológicos , Lentivirus/genética , Regiões Promotoras Genéticas/genética , Transfecção/métodos , Linhagem Celular , Humanos , Plasmídeos/genética , Titulometria
11.
Neuropharmacology ; 150: 80-90, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878403

RESUMO

Distinct regions and cell types in the anterolateral group of the bed nucleus of the stria terminalis (BNSTALG) act to modulate anxiety in opposing ways. A history of chronic stress increases anxiety-like behavior with lasting electrophysiological effects on the BNSTALG. However, the opposing circuits within the BNSTALG suggest that stress may have differential effects on the individual cell types that comprise these circuits to shift the balance to favor anxiogenesis. Yet, the effects of stress are generally examined by treating all neurons within a particular region of the BNST as a homogenoeus population. We used patch-clamp electrophysiology and single-cell quantitative reverse transcriptase PCR (scRT-PCR) to determine how chronic shock stress (CSS) affects electrophysiological and neurochemical properties of Type I, Type II, and Type III neurons in the BNSTALG. We report that CSS resulted in changes in the input resistance, time constant, action potential waveform, and firing rate of Type III but not Type I or II neurons. Additionally, only the Type III neurons exhibited an increase in Crf mRNA and a decrease in striatal-enriched protein tyrosine phosphatase (Ptpn5) mRNA after CSS. In contrast, only non-Type III cells showed a reduction in calcium-permeable AMPA receptor (CP-AMPAR) current and changes in mRNA expression of genes encoding AMPA receptor subunits after CSS. Importantly, none of the effects of CSS observed were seen in all cell types. Our results suggest that Type III neurons play a unique role in the BNSTALG circuit and represent a population of CRF neurons particularly sensitive to chronic stress.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Núcleos Septais/fisiopatologia , Estresse Psicológico/fisiopatologia , Transcriptoma , Animais , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico/metabolismo
12.
Neurosci Biobehav Rev ; 90: 115-129, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660417

RESUMO

Confusion endures as to the exact role of the amygdala in relation to autism. To help resolve this we turned to the NIMH's Research Domain Criteria (RDoC) which provides a classification schema that identifies different categories of behaviors that can turn pathologic in mental health disorders, e.g. autism. While RDoC incorporates all the known neurobiological substrates for each domain, this review will focus primarily on the amygdala. We first consider the amygdala from an anatomical, historical, and developmental perspective. Next, we examine the different domains and constructs of RDoC that the amygdala is involved in: Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Social Processes, and Arousal and Regulatory Systems. Then the evidence for a dysfunctional amygdala in autism is presented with a focus on alterations in development, prenatal valproic acid exposure as a model for ASD, and changes in the oxytocin system therein. Finally, a synthesis of RDoC, the amygdala, and autism is offered, emphasizing the task of disambiguation and suggestions for future research.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Cognição/fisiologia , Ocitocina/metabolismo , Humanos , National Institute of Mental Health (U.S.) , Pesquisa , Estados Unidos , Ácido Valproico/metabolismo
14.
Brain Struct Funct ; 223(4): 1731-1745, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29204911

RESUMO

Previous studies have shown that exposure to stressful events can enhance fear memory and anxiety-like behavior as well as increase synaptic plasticity in the rat basolateral amygdala (BLA). We have evidence that repeated unpredictable shock stress (USS) elicits a long-lasting increase in anxiety-like behavior in rats, but the cellular mechanisms mediating this response remain unclear. Evidence from recent morphological studies suggests that alterations in the dendritic arbor or spine density of BLA principal neurons may underlie stress-induced anxiety behavior. Recently, we have shown that the induction of long-term potentiation (LTP) in BLA principal neurons is dependent on activation of postsynaptic D1 dopamine receptors and the subsequent activation of the cyclic adenosine 5'-monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. Here, we have used in vitro whole-cell patch-clamp recording from BLA principal neurons to investigate the long-term consequences of USS on their morphological properties and synaptic plasticity. We provided evidence that the enhanced anxiety-like behavior in response to USS was not associated with any significant change in the morphological properties of BLA principal neurons, but was associated with a changed frequency dependence of synaptic plasticity, lowered LTP induction threshold, and reduced expression of phosphodiesterase type 4 enzymes (PDE4s). Furthermore, pharmacological inhibition of PDE4 activity with rolipram mimics the effects of chronic stress on LTP induction threshold and baseline startle. Our results provide the first evidence that stress both enhances anxiety-like behavior and facilitates synaptic plasticity in the amygdala through a common mechanism of PDE4-mediated disinhibition of cAMP-PKA signaling.


Assuntos
Complexo Nuclear Basolateral da Amígdala/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Estresse Psicológico/patologia , Estimulação Acústica/efeitos adversos , Animais , Ansiedade/etiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Benzazepinas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Estimulação Elétrica , Técnicas In Vitro , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , Inibidores da Fosfodiesterase 4/farmacologia , Psicoacústica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo Acústico/efeitos dos fármacos , Reflexo Acústico/fisiologia , Rolipram/farmacologia , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/etiologia
15.
Neuropsychopharmacology ; 43(2): 373-383, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28664926

RESUMO

The orbitofrontal cortex (OFC) is thought to link stimuli and actions with anticipated outcomes in order to sustain flexible behavior in an ever-changing environment. How it retains these associations to guide future behavior is less well-defined. Here we focused on one subregion of this heterogeneous structure, the ventrolateral OFC (VLO). CaMKII-driven inhibitory Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) were infused and subsequently activated by their ligand Clozapine-N-oxide (CNO) in conjunction with fear extinction training (a form of aversive conditioning) and response-outcome conditioning (a form of appetitive conditioning). Gi-DREADD-mediated inactivation of the VLO during extinction conditioning interfered with fear extinction memory, resulting in sustained freezing when mice were later tested drug-free. Similarly, Gi-DREADD-mediated inactivation in conjunction with response-outcome conditioning caused a later decay in goal-directed responding-that is, mice were unable to select actions based on the likelihood that they would be rewarded in a sustainable manner. By contrast, inhibitory Gi-DREADDs in the basolateral amygdala (BLA) impaired the acquisition of both conditioned fear extinction and response-outcome conditioning, as expected based on prior studies using other inactivation techniques. Meanwhile, DREADD-mediated inhibition of the dorsolateral striatum enhanced response-outcome conditioning, also in line with prior reports. Together, our findings suggest that learning-related neuroplasticity in the VLO may be necessary for memory retention in both appetitive and aversive domains.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento Animal/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Condicionamento Clássico/fisiologia , Corpo Estriado/fisiologia , Drogas Desenhadas/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Acoplados a Proteínas G , Retenção Psicológica/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Drogas Desenhadas/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Retenção Psicológica/efeitos dos fármacos
16.
J Comp Neurol ; 505(6): 682-700, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17948876

RESUMO

Activation of group II metabotropic glutamate receptors (mGluR2/3) in the amygdala plays a critical role in the regulation of fear and anxiety states. Previous studies using nonselective agonists have suggested this action can result from activation of either pre- or postsynaptic mGluR2/3. Here, we have used a combination of whole-cell patch clamp recording with highly selective agonists (LY354740 and LY379268) and immunoelectron microscopy to examine structure-function relationships for mGluR2/3 in the basolateral amygdala (BLA) and bed nucleus of the stria terminalis (BNST). Stimulation of mGluR2/3 evoked a direct, TTX-insensitive membrane hyperpolarization in all BLA projection neurons tested, but only about half of BNST neurons. The membrane hyperpolarization was mediated by activation of an outward potassium current or blockade of a tonically active inward I(h) current in different groups of BLA neurons. In both regions, mGluR2/3 caused a long-lasting reduction of glutamate release from presynaptic afferent terminals even at concentrations that failed to elicit a direct postsynaptic response. The localization of mGluR2/3 differed regionally, with postsynaptic labeling significantly more common in BLA than BNST, corresponding to the strength of postsynaptic responses recorded there. Our results demonstrate a complex role for mGluR2/3 receptors in modulating anxiety circuitry, including direct inhibition and reduction of excitatory drive. The combination of direct inhibition of projection neurons within the BLA and suppression of excitatory neurotransmission in the BNST may be responsible for the anxiolytic actions of group II mGluR agonists.


Assuntos
Tonsila do Cerebelo/metabolismo , Vias Neurais/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Núcleos Septais/metabolismo , Transmissão Sináptica/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/ultraestrutura , Animais , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Imunoeletrônica , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/ultraestrutura , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos
17.
J Comp Neurol ; 525(9): 2235-2248, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295315

RESUMO

The anterolateral group of the bed nucleus of the stria terminalis (BNSTALG ) is a critical modulator of a variety of rodent and primate behaviors spanning anxiety behavior and drug addiction. Three distinct neuronal cell types have been previously defined in the rat BNSTALG based on differences in the voltage-response to hyperpolarizing and depolarizing current injection. Differences in genetic expression profile between these three cell types suggest electrophysiological cell type may be an indicator for functional differences in the circuit of the rat BNSTALG . Although the behavioral role of the BNST is conserved across species, it is unknown if the same electrophysiological cell types exist in the BNSTALG of the mouse and nonhuman primate. Here, we used whole-cell patch clamp electrophysiology and neuronal reconstructions of biocytin-filled neurons to compare and contrast the electrophysiological and morphological properties of neurons in the BNSTALG from the mouse, rat, and rhesus macaque. We provide evidence that the BNSTALG of all three species contains neurons that match the three defined cell types found in the rat; however, there are intriguing differences in the relative frequency of these cell types as well as electrophysiological and morphological properties of the BNSTALG neurons across species. This study suggests that the overall landscape of the BNSTALG in the primate and mouse may be similar to that of the rat in some aspects but perhaps significantly different in others.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Núcleos Septais/citologia , Análise de Variância , Animais , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Lisina/análogos & derivados , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
18.
Neuropharmacology ; 126: 224-232, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899729

RESUMO

The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT1B receptor agonist CP93129, but not by the 5-HT1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT1B receptor antagonist GR55562, but not affected by the 5-HT1A receptor antagonist WAY 100635 or the 5-HT2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT1B receptors.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Cerebral/fisiologia , Ácido Glutâmico/fisiologia , Neurônios/fisiologia , Serotonina/fisiologia , Tálamo/fisiologia , Animais , Benzamidas/administração & dosagem , Potenciais Pós-Sinápticos Excitadores , Cápsula Externa/fisiologia , Cápsula Interna/fisiologia , Masculino , Vias Neurais/fisiologia , Piridinas/administração & dosagem , Ratos Sprague-Dawley , Receptor 5-HT1B de Serotonina/fisiologia , Antagonistas do Receptor 5-HT1 de Serotonina
19.
Biol Psychiatry ; 81(4): 366-377, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26786312

RESUMO

BACKGROUND: Distinguishing between actions that are more likely or less likely to be rewarded is a critical aspect of goal-directed decision making. However, neuroanatomic and molecular mechanisms are not fully understood. METHODS: We used anterograde tracing, viral-mediated gene silencing, functional disconnection strategies, pharmacologic rescue, and designer receptors exclusively activated by designer drugs (DREADDs) to determine the anatomic and functional connectivity between the orbitofrontal cortex (OFC) and the amygdala in mice. In particular, we knocked down brain-derived neurotrophic factor (Bdnf) bilaterally in the OFC or generated an OFC-amygdala "disconnection" by pairing unilateral OFC Bdnf knockdown with lesions of the contralateral amygdala. We characterized decision-making strategies using a task in which mice selected actions based on the likelihood that they would be reinforced. Additionally, we assessed the effects of DREADD-mediated OFC inhibition on the consolidation of action-outcome conditioning. RESULTS: As in other species, the OFC projects to the basolateral amygdala and dorsal striatum in mice. Bilateral Bdnf knockdown within the ventrolateral OFC and unilateral Bdnf knockdown accompanied by lesions of the contralateral amygdala impede goal-directed response selection, implicating BDNF-expressing OFC projection neurons in selecting actions based on their consequences. The tyrosine receptor kinase B agonist 7,8-dihydroxyflavone rescues action selection and increases dendritic spine density on excitatory neurons in the OFC. Rho-kinase inhibition also rescues goal-directed response strategies, linking neural remodeling with outcome-based decision making. Finally, DREADD-mediated OFC inhibition weakens new action-outcome memory. CONCLUSIONS: Activity-dependent and BDNF-dependent neuroplasticity within the OFC coordinate outcome-based decision making through interactions with the amygdala. These interactions break reward-seeking habits, a putative factor in multiple psychopathologies.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Objetivos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Operante/fisiologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Extinção Psicológica/fisiologia , Hábitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Receptor trkB/fisiologia
20.
Mol Autism ; 8: 42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775827

RESUMO

BACKGROUND: The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. METHODS: Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. RESULTS: Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. CONCLUSIONS: As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.


Assuntos
Tonsila do Cerebelo , Transtorno do Espectro Autista , Comportamento Animal/efeitos dos fármacos , Emoções/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Transcriptoma/efeitos dos fármacos , Ácido Valproico/efeitos adversos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Feminino , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA