Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
World J Microbiol Biotechnol ; 39(5): 112, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907929

RESUMO

The microbial community in biofilm is safeguarded from the action of toxic chemicals, antimicrobial compounds, and harsh/stressful environmental circumstances. Therefore, biofilm-based technology has nowadays become a successful alternative for treating industrial wastewater as compared to suspended growth-based technologies. In biofilm reactors, microbial cells are attached to static or free-moving materials to form a biofilm which facilitates the process of liquid and solid separation in biofilm-mediated operations. This paper aims to review the state-of-the-art of recent research on bacterial biofilm in industrial wastewater treatment including biofilm fundamentals, possible applications and problems, and factors to regulate biofilm formation. We discussed in detail the treatment efficiencies of fluidized bed biofilm reactor (FBBR), trickling filter reactor (TFR), rotating biological contactor (RBC), membrane biofilm reactor (MBfR), and moving bed biofilm reactor (MBBR) for different types of industrial wastewater treatment. Besides, biofilms have many applications in food and agriculture, biofuel and bioenergy production, power generation, and plastic degradation. Furthermore, key factors for regulating biofilm formation were also emphasized. In conclusion, industrial applications make evident that biofilm-based treatment technology is impactful for pollutant removal. Future research to address and improve the limitations of biofilm-based technology in wastewater treatment is also discussed.


Assuntos
Águas Residuárias , Purificação da Água , Biofilmes , Reatores Biológicos/microbiologia , Bactérias , Eliminação de Resíduos Líquidos
2.
Phytochem Rev ; : 1-23, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35431709

RESUMO

Microalgae are recognized as cell factories enriched with biochemicals suitable as feedstock for bio-energy, food, feed, pharmaceuticals, and nutraceuticals applications. The industrial application of microalgae is challenging due to hurdles associated with mass cultivation and biomass recovery. The scale-up production of microalgal biomass in freshwater is not a sustainable solution due to the projected increase of freshwater demands in the coming years. Microalgae cultivation in wastewater is encouraged in recent years for sustainable bioeconomy from biorefinery processes. Wastewater from the food industry is a less-toxic growth medium for microalgal biomass production. Traditional wastewater treatment and management processes are expensive; hence it is highly relevant to use low-cost wastewater treatment processes with revenue generation through different products. Microalgae are accepted as potential biocatalysts for the bioremediation of wastewater. Microalgae based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. This review highlights the importance of microalgal biomass production in food processing wastewater, their characteristics, and different microalgal cultivation methods, followed by nutrient absorption mechanisms. Towards the end of the review, different microalgae biomass harvesting processes with biorefinery products, and void gaps that tend to hinder the biomass production with future perspectives will be intended. Thus, the review could claim to be valuable for sustainable microalgae biomass production for eco-friendly bioproduct conversions.

3.
J Environ Manage ; 183: 204-211, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591849

RESUMO

In this study, the efficiency of free and immobilized cells of newly isolated hexavalent chromium [Cr(VI)] reducing Bacillus cereus strain Cr1 (accession no. KJ162160) was studied in the treatment of tannery effluent. The analysis of effluents revealed high chemical oxygen demand (COD-1260 mg/L), biological oxygen demand (BOD5-660 mg/L), total dissolved solids (TDS-14000 mg/L), electrical conductivity (EC-21.5 mS/cm) and total chromium (TC-2.4 mg/L). The effluents also showed genotoxic effects to Allium cepa. Treatment of tannery effluent with isolated B. cereus strain led to considerable reduction of pollutant load. The pollutant load reduction was studied with both immobilized and free cells and immobilized cells were more effective in reducing COD (65%), BOD (80%), TDS (67%), EC (65%) and TC (92%) after 48 h. GC-MS analysis of pre and post-treatment tannery effluent samples revealed reduction of organic load after treatment with free and immobilized cells. An improvement in mitotic index and reduction in chromosomal aberrations was also observed in A. cepa grown with post-treatement effluent samples compared to untreated sample. Results demonstrate that both methods of bacterial treatment (free and immobilized) were efficient in reducing the pollutant load of tannery effluent as well as in reducing genotoxic effects, however, treatment with immobilized cells was more effective.


Assuntos
Bacillus cereus/metabolismo , Cromo/química , Dano ao DNA/efeitos dos fármacos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Células Imobilizadas/química , Células Imobilizadas/microbiologia , Cromo/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletroquímica de Varredura , Cebolas/efeitos dos fármacos
4.
J Water Health ; 13(2): 319-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042966

RESUMO

Water is critical for life, but many people do not have access to clean and safe drinking water and die because of waterborne diseases. The analysis of drinking water for the presence of indicator microorganisms is key to determining microbiological quality and public health safety. However, drinking water-related illness outbreaks are still occurring worldwide. Moreover, different indicator microorganisms are being used in different countries as a tool for the microbiological examination of drinking water. Therefore, it becomes very important to understand the potentials and limitations of indicator microorganisms before implementing the guidelines and regulations designed by various regulatory agencies. This review provides updated information on traditional and alternative indicator microorganisms with merits and demerits in view of their role in managing the waterborne health risks as well as conventional and molecular methods proposed for monitoring of indicator and pathogenic microorganisms in the water environment. Further, the World Health Organization (WHO) water safety plan is emphasized in order to develop the better approaches designed to meet the requirements of safe drinking water supply for all mankind, which is one of the major challenges of the 21st century.


Assuntos
Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Microbiologia da Água/normas , Bactérias/classificação , Bactérias/genética , Biomarcadores , Água Potável/microbiologia , Água Potável/normas , Fezes/microbiologia , Humanos
5.
Chemosphere ; 360: 142454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810801

RESUMO

The aim of the present study was to find environmentally friendly solutions for the disposal of problematic and toxic textile sludge (TS) by producing textile sludge biochar (TSB) by pyrolysis and evaluating its chemical properties, polycyclic aromatic hydrocarbon (PAH) content, heavy metals (HMs) speciation, environmental risks, and effects on seed germination. Pyrolysis of TS at temperatures ranging from 300 to 700 °C significantly reduced (85-95%) or eliminated certain PAHs in the biochar, enriched heavy metal content within land use limits, and increased bioavailability of HMs in biochar produced at 300 °C and decreased leaching capacity of HMs in biochar produced at 700 °C. The speciation of HMs and their bioavailability during pyrolysis processes was strongly temperature dependent, with lower temperatures increasing the toxic and bioavailable forms of Zn and Ni, while higher temperatures converted the bioavailable Ni to a more stable form, while Cu, Cr, and Pb were transformed from stable to toxic and bioavailable forms. The ecological risk index (RI) values of TSB-300 and TSB-700 are below the threshold value of 150, indicating a low-risk level, and the risk level decreases at temperatures above 500 °C. Further, the extracts of TSB-300 and TSB-700 had the highest percentage of germinating seeds, while the extracts of TS and TSB-500 inhibited seed germination by 20-30% compared to the control. These results indicate that pyrolysis effectively reduces PAHs and binds leachable HMs in biochar, however, the specific pyrolysis temperature influences metal speciation, bioavailability, seed germination, and environmental risk.


Assuntos
Carvão Vegetal , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Pirólise , Esgotos , Temperatura , Metais Pesados/análise , Metais Pesados/química , Carvão Vegetal/química , Esgotos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Têxteis , Germinação/efeitos dos fármacos , Resíduos Industriais
6.
Chemosphere ; 349: 140742, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013027

RESUMO

Currently, scarcity/security of clean water and energy resources are the most serious problems worldwide. Industries use large volume of ground water and a variety of chemicals to manufacture the products and discharge large volume of wastewater into environment, which causes severe impacts on environment and public health. Fossil fuels are considered as major energy resources for electricity and transportation sectors, which release large amount of CO2 and micro/macro pollutants, leading to cause the global warming and public health hazards. Therefore, algae-bacterial consortium (A-BC) may be eco-friendly, cost-effective and sustainable alternative way to treat the industrial wastewaters (IWWs) with Bio-H2 production. A-BC has potential to reduce the global warming and eutrophication. It also protects environment and public health as it converts toxic IWWs into non or less toxic (biomass). It also reduces 94%, 90% and 50% input costs of nutrients, freshwater and energy, respectively during IWWs treatment and Bio-H2 production. Most importantly, it produce sustainable alternative (Bio-H2) to replace use of fossil fuels and fill the world's energy demand in eco-friendly manner. Thus, this review paper provides a detailed knowledge on industrial wastewaters, their pollutants and toxic effects on water/soil/plant/humans and animals. It also provides an overview on A-BC, IWWs treatment, Bio-H2 production, fermentation process and its enhancement methods. Further, various molecular and analytical techniques are also discussed to characterize the A-BC structure, interactions, metabolites and Bio-H2 yield. The significance of A-BC, recent update, challenges and future prospects are also discussed.


Assuntos
Poluentes Ambientais , Águas Residuárias , Humanos , Bactérias , Plantas , Combustíveis Fósseis , Biomassa , Água , Biocombustíveis
7.
ScientificWorldJournal ; 2013: 386769, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348154

RESUMO

Providencia sp. strain X1 showing the highest xylanase activity among six bacterial isolates was isolated from saw-dust decomposing site. Strain X1 produced cellulase-free extracellular xylanase, which was higher in wheat bran medium than in xylan medium, when cultivated at pH 8.0 and 35°C. Zymogram analysis of crude preparation of enzymes obtained while growing on wheat bran and birchwood xylan revealed the presence of seven and two distinct xylanases with estimated molecular weight of 33; 35; 40; 48; 60; 75; and 95 kDa and 33 and 44 kDa, respectively. The crude xylanases were produced on wheat bran medium and showed optimum activity at pH 9.0 and 60°C. The thermotolerance studies showed activity retention of 100% and 85% at 40°C and 60°C after 30 min preincubation at pH 9.0. It was tolerant to lignin, ferulic acid, syringic acid, and guaiacol and retained 90% activity after ethanol treatment. The enzyme preparation was also tolerant to methanol and acetone and showed good activity retention in the presence of metal ions such as Fe2+, Mg2+, Zn2+, and Ca2+. The crude enzyme preparation was classified as endoxylanase based on the product pattern of xylan hydrolysis. Pretreatment of kraft pulp with crude xylanases for 3 h at 60°C led to a decrease in kappa number by 28.5%. The properties of present xylanases make them potentially useful for industrial applications.


Assuntos
Fibras na Dieta/microbiologia , Endo-1,4-beta-Xilanases/metabolismo , Providencia/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lignina , Metais , Dados de Sequência Molecular , Fenóis , Filogenia , Providencia/classificação , Providencia/genética , Providencia/isolamento & purificação , RNA Ribossômico 16S , Solventes , Temperatura , Xilanos/metabolismo
8.
Chemosphere ; 286(Pt 2): 131795, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371360

RESUMO

Biofilm formation ability of bacteria makes them potential in the field of tannery effluent treatment. However, the hazardous nature of effluent and environmental conditions may disturb the biofilm formation ability of bacteria which ultimately affects their effluent treatment efficiency. Accordingly, we isolated and characterized biofilm-forming bacteria Bacillus vallismortis (MT027009), Bacillus haynesii (MT027008), and Alcaligenes aquatilis (MT027005) from tannery sludge and examined them for biofilm formation under variable environmental conditions. Biofilm formation in tryptic soy broth (TSB) at different incubation times (24-120 h) revealed that the biofilm formation activity of the strain B. haynesii was not affected by incubation time, whereas the increase in biofilm formation was observed in the case of B. vallismortis (28 %) and A. aquatilis (52 %) after 48 h. The medium pH (pH 5.0-9.0) had a limited effect on biofilm formation except in the case of A. aquatilis at pH 5.0 (94 %) and pH 9.0 (80 %). Furthermore, compared to the controls (only TSB), the strains B. vallismortis, B. haynesii, and A. aquatilis showed enhanced biofilm formation in undiluted tannery effluent (28, 33, and 21 %) and 25 mg L-1 Cr(VI) (23 %, 48 % 32 %). The biofilm structure was influenced by Cr(VI) as revealed by scanning electron microscopy (SEM) analysis. The results of Cr(VI) bioreduction studies suggest that bacterial biofilm (60-99 %) has a greater potential to remove Cr(VI) than planktonic cells (43-94 %). The results of the study provide important data on biofilm formation by indigenous bacteria in effluent environment conditions, making them potential isolates for tannery effluent treatment.


Assuntos
Esgotos , Poluentes Químicos da Água , Alcaligenes , Bacillus , Bactérias , Biodegradação Ambiental , Biofilmes , Cromo/análise , Resíduos Industriais/análise , Poluentes Químicos da Água/análise
9.
Biotechnol Rep (Amst) ; 35: e00755, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35880093

RESUMO

Kraft lignin (KL), is the major pollutant in pulp and paper effluent and due to its heterogeneous structure, it is resistant to the depolymerization process. It has drawn much attention from the researcher due to its challenging degradation process. In this study, a KL-degrading bacterium was isolated and screened from paper mill sludge. This bacterium was identified as ligninolytic Bacillus aryabhattai using biochemical and 16SrRNA gene analysis. B. aryabhattai showed maximum activities of lignin peroxidase-LiP (0.74 IU mL-1) and manganese peroxidase-MnP (9.2 IU mL-1) on the 4th day, and 5th day, respectively. A total 84% of KL (500 mg L -1) reduction was observed after 14 days. The KL bio-degradation was confirmed based on changes in chemical stracture of KL and new metabolites identification using FTIR and GC-MS, respectively. The study concluded that B. aryabhattai maybe becomes a potential biological agent in KL biodegradation and treatment of other lignin-containing industrial effluents.

10.
Chemosphere ; 292: 133250, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34922975

RESUMO

Different phenolic compounds, including multimeric lignin derivatives in the ß-O-4 form, are among the most prevalent compounds in wastewater, often generated from paper industries. Relatively small concentrations of lignin are hazardous to aquatic organisms and can trigger severe environmental hazards. Herein, we present a predictive toolset to insight the induced toxic hazards prediction, and their Lignin peroxidase (LiP)-assisted degradation mechanism of selected multimeric lignin model compounds. T.E.ST and Toxtree toolset were deployed for toxic hazards estimation in different endpoints. To minimize the concerning hazards, we screened multimeric compounds for binding affinity with LiP. The binding affinity was found to be significantly lower than the reference compound. An Extra precision (XP) Glide score of -6.796 kcal/mol was found for dimer (guaiacyl 4-O-5 guaiacyl) complex as lowest compared to reference compound (-4.007 kcal/mol). The active site residues ASP-153, HIP-226, VAL-227, ARG-244, GLU-215, 239, PHE-261 were identified as site-specific key binding AA residues actively involved with corresponding ligands, forming Hydrophobic, H-Bond, π-Stacking, π-π type interactions. The DESMOND-assisted molecular dynamics simulation's (MDS) trajectories of protein-ligand revealed the considerable binding behavior and attained stability and system equilibrium state. Such theoretical and predictive conclusions indicted the feasibility of LiP assisted sustainable mitigation of lignin-based compounds, and such could be used to protect the environment from the potential hazards posed by recognized similar pollutants.


Assuntos
Poluentes Ambientais , Lignina , Peroxidase , Águas Residuárias , Água
11.
Chemosphere ; 297: 134123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240156

RESUMO

Distillery industry generates a huge amount of wastewater, which contains a high strength of organic and inorganic load. Accordingly, this study aims to analyze the physico-chemical pollution parameters and the occurrence of phytotoxic, cytotoxic and genotoxic pollutants in wastewater. The result revealed that values of wastewater parameters were recorded as 13268 mg l-1 (BOD), 25144 mg l-1 (COD), 25144 mg l-1 (TS), and 6634 mg l-1 (phosphate), while pH was alkaline. The organic compounds detected by GC-MS were quercetin 7,3',4'-trimethoxy, octadecadienoic acid, propanoic acid, glycocholic acid methyl ester, cantaxanthin, etc. The Allium cepa was used for the toxicity test with different concentrations of wastewater showed a significant level of reduction in root growth and length after exposure and the maximum reduction was at 25% and 20%. Phytotoxicity studies were performed using Cicer arietinum L. with different concentrations of wastewater, which showed adverse effects on seed germination, root length, and the effect was associated with the increasing concentration of wastewater. A. cepa root tips were used for the analysis of mitotic index (MI), nuclear abnormalities (NA), and chromosomal aberrations (CA). MI was decreasing significantly from 72% (control) to 33%, 22%, 23%, 21%, and 18% at 5%, 10%, 15%, 20%, and 25% wastewater concentration, respectively. The A. cepa root tip cells showed chromosomal aberrations and nuclear abnormalities like vagrant, stickiness, chromosomal loss, c-mitosis, binucleated, micronuclei, and aberrant cell. This study concluded that the wastewater treatment process is insufficient and the discharged waste needs a proper assessment to know the associated health risk.


Assuntos
Cicer , Poluentes Ambientais , Aberrações Cromossômicas , Dano ao DNA , Poluentes Ambientais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Meristema , Índice Mitótico , Cebolas/genética , Raízes de Plantas , Águas Residuárias/química
12.
Bioresour Technol ; 352: 127076, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351569

RESUMO

The effective degradation of KL from paper mill effluent is an important for environmental safety. This research is primarily concerned with the identification of KL-degrading Bacillus cereus from activated sludge and their possible use for the degradation of Kraft lignin (KL). This strain was involved in the production of lignin peroxidase-LiP (3.20 U/mL), manganese peroxidase-MnP (20.36 U/mL), and laccase (21.35 U/mL) enzymes, which were responsible for high KL degradation (89%) and decolorization (40%) at 1000 mg/L KL in 3 days. The SEM-EDS, UV-Vis, FTIR, and GC-MS analysis were used to analyze the bacterial cell and KL interactions to trace the KL degradation process. The significant reduction of pollutants (KL-72.5%, color-62.0%, COD-45.05%) and reduction in toxicity (80%) of bacterial-treated effluent indicated that B. cereus has the potential to be used in the degradation of pollutants from paper mill effluents.


Assuntos
Poluentes Ambientais , Águas Residuárias , Bacillus cereus/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/análise , Resíduos Industriais/análise , Lignina/metabolismo , Papel , Águas Residuárias/análise
13.
Bioresour Technol ; 352: 127109, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378281

RESUMO

Biofilm-forming bacteria play a key role in the removal of heavy metals including hexavalent chromium [Cr(VI)] from contaminated sites. In this study, biofilm-forming B. haynesii was examined for extracellular polymeric substances (EPS) production and hexavalent chromium [Cr(VI)] reduction potential. Exposure of B. haynesii with Cr(VI) (12.5-100 mg L-1) for 48 h enhanced pellicle dry weight (20-24%), cell-size (5.1-23.2%) and cell granularity (8.5-19.2%). Also, EPS production was increased by 10-35% by promoting the synthesis of protein (94-119%) and polysaccharide (2-33%) components in EPS. Further, the reduction (27.7 %) and distribution (15.87%) of Cr(VI) were mainly mediated by EPS than the other cellular fractions. Findings of the study suggest that the EPS from B. haynesii was efficiently reduced to Cr(VI) present in aqueous medium and the potential of the organism can be further explored for the mitigation of Cr(VI) contamination.


Assuntos
Cromo , Matriz Extracelular de Substâncias Poliméricas , Bacillus , Biofilmes
14.
Bioresour Technol ; 339: 125586, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34311409

RESUMO

Treatment of tannery effluent (TE) using bacterial biofilm is a trending approach in the current scenario, due to greater survival and adaptation in stress conditions. The present study is concerned with the characterization of biofilm-forming bacterium Enterococcus faecium from tannery sludge and the investigation of their activity under different physiological conditions. Biofilm formation by E. faecium was strongly affected by variable physiological conditions. The optimum conditions were pH 7.5, temperature 28 °C, incubation time up to 96 h, glucose 1%, yeast extract 0.1-0.5%, NaCl 0.1-0.5%, tannery effluent-TE up to 50% v/v and Cd, Cr (VI) and Ni from 0.25 to 0.5 mM. Further, E. faecium treated TE was less phytotoxic on the fenugreek plant than the TE treated by non-biofilm forming isolate. The toxicity of TE could be reduced by the potentially biofilm-forming bacteria, which may be used in the bioremediation process.


Assuntos
Enterococcus faecium , Biodegradação Ambiental , Biofilmes
15.
Int J Biol Macromol ; 177: 58-82, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33577817

RESUMO

Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.


Assuntos
Lignina/metabolismo , Peroxidases/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Catálise , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Humanos , Xenobióticos/metabolismo
16.
RSC Adv ; 11(24): 14632-14653, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423962

RESUMO

Lignin peroxidase is a heme-containing biocatalyst, well-known for its diverse applications in the fields from environmental chemistry to biotechnology. LiP-mediated oxidative catalysis is H2O2-dependent, and can oxidize phenolic, and non-phenolic substrates by oxidative cleavage of the C-C and C-O bonds of lignin. In contrast to fungi-derived LiP, the binding affinity of bacterial-derived LiP to lignin at the molecular level is poorly known to date. Tremendous wet-lab studies have been unveiled that provide degradation and biotransformation information on kraft lignin, whilst studies on the completely transformed compounds and the degradation of each transformed compounds simultaneously during degradation are scarce. To gain an understanding of the degradation process using docking, and MDS based studies, we assessed the binding affinity of selected lignin model compounds with bacterial origin LiP and validated such docked complexes exploiting 30 ns molecular dynamics simulations. We selected and picked a total of 12 lignin model compounds for molecular modeling analysis, namely two chlorinated lignin model compounds (monomer) (2-chlorosyringaldehyde and 5-chlorovanillin), eight standard lignin model compounds (veratryl alcohol, syringyl alcohol, sinapyl alcohol, methyl hydroquinone, guaiacol, coniferyl alcohol, catechol, and 4-methoxy phenol), while, two 4-O-5, and ß-O-4 linkage-based multimeric model compounds (dimer: 2-methoxy-6-(2-methoxy-4-methylphenoxy)-4-methylphenol; trimer: syringyl ß-O-4 syringyl ß-O-4 sinapyl alcohol). Far more specific binding residues were observed from XP-Glide docking, as TYR, HIP (protonated histidine), PHE, VAL, ASP, THR, LYS and GLN. The binding affinity was confirmed by the Gibbs free energy or binding energy (ΔG) score; furthermore, it is found that the maximum binding energy seems to be observed for 4-methoxyphenol with a Glide score of -3.438 with Pi-Pi stacking and H-bond type bonding interactions, whilst the lowest XP Gscore as -8.136 with Pi-Pi stacking and H-bond (side chain) type bonding interactions were found for the trimer model compound. The docked complexes were further evaluated for deep rigorous structural and functional fluctuation analyses through high-performance molecular dynamics simulations-DESMOND, after a post simulation run of 30 ns. The RMSD trajectory analyses of the protein-ligands were found to be in the equilibrium state at the end of simulation run for multimeric lignin model compounds. In addition, ionic ligand-protein interaction occurs among chlorinated compounds, while hydrophobic and H-bond contacts have frequently been observed in all lignin-model compounds. The findings herein demonstrate that bacterial LiP can effectively catalyze multiple lignin model compounds, and it might further be used as an effective tool for sustainable mitigation of diverse environmental contaminants.

17.
Sci Total Environ ; 770: 144561, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736422

RESUMO

The feasibility of in-silico techniques, together with the computational framework, has been applied to predictive bioremediation aiming to clean-up contaminants, toxicity evaluation, and possibilities for the degradation of complex recalcitrant compounds. Emerging contaminants from different industries have posed a significant hazard to the environment and public health. Given current bioremediation strategies, it is often a failure or inadequate for sustainable mitigation of hazardous pollutants. However, clear-cut vital information about biodegradation is quite incomplete from a conventional remediation techniques perspective. Lacking complete information on bio-transformed compounds leads to seeking alternative methods. Only scarce information about the transformed products and toxicity profile is available in the published literature. To fulfill this literature gap, various computational or in-silico technologies have emerged as alternating techniques, which are being recognized as in-silico approaches for bioremediation. Molecular docking, molecular dynamics simulation, and biodegradation pathways predictions are the vital part of predictive biodegradation, including the Quantitative Structure-Activity Relationship (QSAR), Quantitative structure-biodegradation relationship (QSBR) model system. Furthermore, machine learning (ML), artificial neural network (ANN), genetic algorithm (GA) based programs offer simultaneous biodegradation prediction along with toxicity and environmental fate prediction. Herein, we spotlight the feasibility of in-silico remediation approaches for various persistent, recalcitrant contaminants while traditional bioremediation fails to mitigate such pollutants. Such could be addressed by exploiting described model systems and algorithm-based programs. Furthermore, recent advances in QSAR modeling, algorithm, and dedicated biodegradation prediction system have been summarized with unique attributes.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Simulação por Computador , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
18.
Sci Total Environ ; 777: 145988, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684751

RESUMO

Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.


Assuntos
Lacase , Lignina , Peroxidases , Águas Residuárias , Biodegradação Ambiental , Fenóis
19.
Bioresour Technol ; 340: 125591, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34325390

RESUMO

Biodegradation of environmentally hazardous synthetic dyes by enzymes has been achieved the highest interest in recent years. In this work, we optimized Remazol Brilliant Blue R (RBBR) dye biodegradation by Arthrographis kalrae derived laccase via the Box-Behnken design (BBD) approach of the surface response methodology (RSM). Optimization of dye decolourisation by one variable at a time (OVAT) approach resulted in optimal dye decolourisation at laccase dose (2 IU mL-1), pH (7.0), temperature (35 °C), incubation time (240 min), and initial dye concentration (100 mg L-1). The optimized process through BBD enhanced dye decolourisation (97.18%). Fourier Transform Infrared Spectroscopy and UV-Visible Spectrophotometry have proven biodegradation. In addition, in comparison to untreated samples, the laccase-treated dye sample showed relatively less phyto- and cytotoxic effect on Allium cepa L. Extra Precision Glide docking exhibited the binding affinity score of -5.355 kcal mol-1, between laccase-RBBR complex.


Assuntos
Corantes , Lacase , Ascomicetos , Biodegradação Ambiental , Têxteis
20.
Sci Total Environ ; 795: 148722, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247088

RESUMO

Sewage sludge (SS) is an abundantly available feedstock, which is generally considered as potential threat to human health and environment. Its utilization in any process would be of great help for environmental sustainability. Accordingly, this work aimed to prepare and characterize the sewage sludge biochar (SSB) at temperatures, i.e. (500, 450, 400, and 350 °C), and further analyze the available nutrients and contaminants as well as agri application potential. The results indicated that the total nitrogen (TN), electrical conductivity (EC), and total organic carbon (TOC) content in SSBs decreased with increasing pyrolysis temperature. The overall concentration of polycyclic aromatic hydrocarbons (PAHs) in SSBs was substantially lower (1.8-9.7-fold depending on pyrolysis temperature) than in SS. Pyrolysis of SS enriched the heavy metals content in SSBs and the relative enrichment factor (RE) factor varied between 1.1 and 2.1 depending on the pyrolysis temperature. Furthermore, compared to SS, the leaching rate of heavy metals was significantly decreased in SSBs (1.1-100-fold depending on the pyrolysis temperature) and the pyrolysis temperature of 400-450 °C prevented the Ni, Pb, Cr, and Zn leaching in SSB. The total PAH and heavy metals content in biochars were below the control standard for land application. Finally, testing of the growth-promoting effect of biochar extracts on fenugreek plants revealed that SSB prepared at 350 °C significantly stimulated the root and shoot length of 5-days old seedlings. This study provides important data for potential environmental risks of SSB applications.


Assuntos
Metais Pesados , Pirólise , Carvão Vegetal , Humanos , Esgotos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA