Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 134(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33277378

RESUMO

Our recent findings demonstrated that the histone chaperone and DNA repair factor aprataxin and PNK-like factor (APLF) could regulate epithelial to mesenchymal transition (EMT) during the reprogramming of murine fibroblasts and in breast cancer metastasis. Therefore, we investigated the function of APLF in EMT associated with mouse development. Here, we show that APLF is predominantly enhanced in trophectoderm (TE) and lineages derived from TE in pre- and post-implantation embryos. Downregulation of APLF induced the hatching of embryos in vitro, with a significant increase in Cdh1 and Cdx2 expression. Aplf short hairpin RNA-microinjected embryos failed to implant in vivo Rescue experiments neutralized the knockdown effects of APLF both in vitro and in vivo Reduced expression of Snai2 and Tead4, and the gain in Cdh1 and sFlt1 (also known as Flt1) level, marked the differentiation of APLF-knocked down trophoblast stem cells that might contribute towards the impaired implantation of embryos. Hence, our findings suggest a novel role for APLF during implantation and post-implantation development of mouse embryos. We anticipate that APLF might contribute to the establishment of maternal-fetal connection, as its fine balance is required to achieve implantation and thereby attain proper pregnancy.


Assuntos
Chaperonas de Histonas , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Fator de Transcrição CDX2 , Caderinas , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Implantação do Embrião , Transição Epitelial-Mesenquimal , Feminino , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose , Gravidez , Trofoblastos
2.
Eur J Cell Biol ; 103(3): 151439, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968704

RESUMO

Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.

3.
Front Cell Dev Biol ; 10: 767773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445016

RESUMO

Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- "the guardian of genome stability and epigenetic information" controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.

4.
Cell Biosci ; 10: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257110

RESUMO

Thanks to the advancement in science and technology and a significant number of cancer research programs being carried out throughout the world, the prevention, prognosis and treatment of breast cancer are improving with a positive and steady pace. However, a stern thoughtful attention is required for the metastatic breast cancer cases-the deadliest of all types of breast cancer, with a character of relapse even when treated. In an effort to explore the less travelled avenues, we summarize here studies underlying the aspects of histone epigenetics in breast cancer metastasis. Authoritative reviews on breast cancer epigenetics are already available; however, there is an urgent need to focus on the epigenetics involved in metastatic character of this cancer. Here we put forward a comprehensive review on how different layers of histone epigenetics comprising of histone chaperones, histone variants and histone modifications interplay to create breast cancer metastasis landscape. Finally, we propose a hypothesis of integrating histone-epigenetic factors as biomarkers that encompass different breast cancer subtypes and hence could be exploited as a target of larger population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA