Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 55(11): 8293-8305, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29527653

RESUMO

The secretome-mediated responses over cellular physiology are well documented. Stem cells have been ruling the field of secretomics and its role in regenerative medicine since the past few years. However, the mechanistic aspects of secretome-mediated responses and the role of other cells in this area remain somewhat elusive. Here, we investigate the effects of secretome-enriched conditioned medium (CM) of neuronally differentiated PC12 cells on the neuronal differentiation of human mesenchymal stem cells (hMSCs). The exposure to CM at a ratio of 1:1 (CM: conditioned medium of PC12 cells) led to neuronal induction in hMSCs. This neuronal induction was compared with a parallel group of cells exposed to nerve growth factor (NGF). There was a marked increase in neurite length and expression of neuronal markers (ß-III tubulin, neurofilament-M (NF-M), synaptophysin, NeuN in exposed hMSCs). Experimental group co-exposed to NGF and CM showed an additive response via MAPK signaling and directed the cells particularly towards cholinergic lineage. The ability of CM to enhance the neuronal properties of stem cells could aid in their rapid differentiation into neuronal subtypes in case of stem cell transplantation for neuronal injuries, thus broadening the scope of non-stem cell-based applications in the area of secretomics.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Proteoma/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Células PC12 , Ratos
2.
Neuromolecular Med ; 20(2): 233-251, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603067

RESUMO

A perturbed cellular homeostasis is a key factor associated with xenobiotic exposure resulting in various ailments. The local cellular microenvironment enriched with secretory components aids in cell-cell communication that restores this homeostasis. Deciphering the underlying mechanism behind this restorative potential of secretome could serve as a possible solution to many health hazards. We, therefore, explored the protective efficacy of the secretome of differentiated PC12 cells with emphasis on induction of autophagy and mitochondrial biogenesis. Monocrotophos (MCP), a widely used neurotoxic organophosphate, was used as the test compound at sublethal concentration. The conditioned medium (CM) of differentiated PC12 cells comprising of their secretome restored the cell viability, oxidative stress and apoptotic cell death in MCP-challenged human mesenchymal stem cells and SHSY-5Y, a human neuroblastoma cell line. Delving further to identify the underlying mechanism of this restorative effect we observed a marked increase in the expression of autophagy markers LC3, Beclin-1, Atg5 and Atg7. Exposure to autophagy inhibitor, 3-methyladenine, led to a reduced expression of these markers with a concomitant increase in the expression of pro-apoptotic caspase-3. Besides that, the increased mitochondrial fission in MCP-exposed cells was balanced with increased fusion in the presence of CM facilitated by AMPK/SIRT1/PGC-1α signaling cascade. Mitochondrial dysfunctions are strongly associated with autophagy activation and as per our findings, cellular secretome too induces autophagy. Therefore, connecting these three potential apices can be a major breakthrough in repair and rescue of xenobiotic-damaged tissues and cells.


Assuntos
Autofagia/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Monocrotofós/toxicidade , Proteínas do Tecido Nervoso/fisiologia , Neurotoxinas/toxicidade , Células PC12/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Microambiente Celular , Eletroforese em Gel Bidimensional , Humanos , Células-Tronco Mesenquimais/citologia , Neuroblastoma/patologia , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Sistemas de Translocação de Proteínas , Proteoma , Ratos
3.
Mol Neurobiol ; 55(11): 8278-8292, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29526017

RESUMO

The role of resveratrol (RV) as a neuroprotectant is well recognized, and cellular molecules involved in imparting the physiological effect have been well illustrated. However, some ambiguity still prevails as the specific receptor, and downstream signaling molecules are not yet clearly stated. So, we investigated the signaling pathway(s) involved in its cellular protection in the human umbilical cord blood mesenchymal stem cell (hUCB-MSC) derived neuronal cells. The mesenchymal stem cells were exposed to various concentrations (10, 100, 1000 µM) of monocrotophos (MCP), a known developmental neurotoxic organophosphate pesticide, for a period of 24 h. The MAPK signaling pathways (JNK, p38, and ERK) known to be associated with MCP-induced damages were also taken into consideration to identify the potential connection. The biological safe dose of RV (10 µM) shows a significant restoration in the MCP-induced alterations. Under the specific growth conditions, RV exposure was found to promote neuronal differentiation in the hUCB-MSCs. The exposure of cells to a specific pharmacological inhibitor (LY294002) of PI3K confirms the significant involvement of PI3K-mediated pathway in the ameliorative responses of RV against MCP exposure. Our data identifies the substantial role of RV in the restoration of MCP-induced cellular damages, thus proving to have a therapeutic potential against organophosphate pesticide-induced neurodegeneration.


Assuntos
Sangue Fetal/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Monocrotofós/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Resveratrol/farmacologia , Transdução de Sinais , Adulto , Anexina A5 , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Propídio/metabolismo , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Neurobiol ; 55(4): 2828-2839, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28455695

RESUMO

The role of resveratrol (RV), a natural polyphenol, is well documented, although its role on neurogenesis is still controversial and poorly understood. Therefore, to decipher the cellular insights of RV on neurogenesis, we investigated the potential effects of the compound on the survival, proliferation, and neuronal differentiation of human cord blood-derived mesenchymal stem cells (hCBMSCs). For neuronal differentiation, purified and characterized hCBMSCs were exposed to biological safe doses of RV (10 µM) alone and in combination with nerve growth factor (NGF-50 ng). The cells exposed only to NGF (50 ng/mL) served as positive control for neuronal differentiation. The genes showing significant involvement in the process of neuronal differentiation were further funneled down at transcriptional and translational level. It was observed that RV promotes PKA-mediated neuronal differentiation in hCBMSCs by inducing canonical pathway. The studies with pharmacological inhibitors also confirmed that PKA significantly induces ß-catenin expression via GSK3ß induction and stimulates CREB phosphorylation and pERK1/2 induction. Besides that, the studies also revealed that RV additionally possesses the binding sites for molecules other than PKA and GSK3ß, with which it interacts. The present study therefore highlights the positive impact of RV over the survival, proliferation, and neuronal differentiation in hCBMSCs via PKA-mediated induction of GSK3ß, ß catenin, CREB, and ERK1/2.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sangue Fetal/citologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/citologia , Resveratrol/farmacologia , Células-Tronco/citologia , Via de Sinalização Wnt/efeitos dos fármacos , Biomarcadores/metabolismo , Cálcio/metabolismo , Separação Celular , AMP Cíclico/metabolismo , Humanos , Modelos Biológicos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
5.
Mol Neurobiol ; 54(3): 1797-1807, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26887381

RESUMO

The profound significance of autophagy as a cell survival mechanism under conditions of metabolic stress is a well-proven fact. Nearly a decade-long research in this area has led scientists to unearth various roles played by autophagy other than just being an auto cell death mechanism. It is implicated as a vital cell survival pathway for clearance of all the aberrant cellular materials in case of cellular injury, metastasis, disease states, cellular stress, neurodegeneration and so on. In this review, we emphasise the critical role of autophagy in the environmental stressors-induced neurotoxicity and its therapeutic implications for the same. We also attempt to shed some light on the possible protective role of autophagy in developmental neurotoxicity (DNT) which is a rapidly growing health issue of the human population at large and hence a point of rising concern amongst researchers. The intimate association between DNT and neurodegenerative disorders strongly indicates towards adopting autophagy activation as a much-needed remedy for DNT.


Assuntos
Autofagia/fisiologia , Exposição Ambiental/efeitos adversos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Síndromes Neurotóxicas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/patologia
6.
Mol Neurobiol ; 53(10): 6938-6949, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26666665

RESUMO

Stem cell biology has played a pivotal role in the field of disease modeling, regenerative medicine, and tissue engineering. The scope of stem cell research has been further extended to address the issues associated with toxicity and biosafety. However, its role in the field of neurotoxicity (NT) and the emerging field of developmental neurotoxicity (DNT) is somewhat underrepresented and needs thorough investigation. Several challenges have hindered the progress of NT and DNT studies, and there is a dire need for human-specific high-throughput in vitro system(s) as a tool with better predictivity, reliability, and reproducibility. The unique proliferation and pluripotency of stem cells makes them a tremendous resource for human material, allowing the prediction of drug toxicity and metabolic effects of chemicals. Recognizing the growing importance of NT and DNT and the application of stem cell biology, in this review article, we provide the diversified approaches of stem cell research which can be effectively applied to the NT and DNT studies and provide an update of the recent progress made so far. We further provide a futuristic approach towards novel stem cell-based strategies for NT and DNT testing. We have further discussed the current technologies, role of induced pluripotent stem cells, the application of three-dimensional (3D) cultures and role of stem cell-derived organs in the NT and DNT studies.


Assuntos
Crescimento e Desenvolvimento , Síndromes Neurotóxicas/patologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Humanos , Modelos Biológicos , Esferoides Celulares/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA