Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Reproduction ; 167(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301360

RESUMO

In brief: Peroxisome proliferator-activated receptor gamma (PPARG) is a critical regulator of placental function, but earlier roles in preimplantation embryo development and embryonic origins of placental formation have not been established. Results herein demonstrate that PPARG responds to pharmacologic stimulation in the bovine preimplantation embryo and influences blastocyst development, cell lineage specification, and transcripts important for placental function. Abstract: Peroxisome proliferator-activated receptor gamma (PPARG) is a key regulator of metabolism with conserved roles that are indispensable for placental function, suggesting previously unidentified and important roles in preimplantation embryo development. Herein, we report the functional characterization of bovine PPARG to reveal expression beginning on D6 of development with nuclear and ubiquitous patterns. Day 6 PPARG+ embryos have fewer total cells and a lower proportion of trophectoderm cells compared to PPARG- embryos (P < 0.05). Coculture with a PPARG agonist, rosiglitazone (Ros), or antagonist GW9662 (GW), decreases blastocyst development (P < 0.01). Day 7.5 (D7.5) developmentally delayed embryos exposed to Ros express lower transcript abundance of key genes important for placental development and cell lineage formation (CDX2, RXRB, SP1, TFAP2C, SIRT1, and PTEN). In contrast, Ros does not alter transcript abundance in D7.5 blastocysts, but GW treatment lowers RXRA, RXRB, SP1, and NFKB1 expression. Knockout of embryonic PPARG does not alter blastocyst formation and hatching ability but decreases total cell number in D7.5 blastocysts. The decreased embryo development response and affected pathways following targeted pharmacological perturbation vs embryonic knockout of PPARG suggest roles of both maternal and embryonic origins. These data reveal regulatory contributions of PPARG in preimplantation embryo development, cell lineage formation, and regulation of transcripts associated with placental function.


Assuntos
PPAR gama , Placenta , Gravidez , Animais , Bovinos , Feminino , PPAR gama/genética , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Placenta/metabolismo , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
2.
Proc Natl Acad Sci U S A ; 116(45): 22635-22644, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636193

RESUMO

Single-cell RNA sequencing of cells from cultured human blastocysts has enabled us to define the transcriptomic landscape of placental trophoblast (TB) that surrounds the epiblast and associated embryonic tissues during the enigmatic day 8 (D8) to D12 peri-implantation period before the villous placenta forms. We analyzed the transcriptomes of 3 early placental cell types, cytoTB (CTB), syncytioTB (STB), and migratoryTB (MTB), picked manually from cultured embryos dissociated with trypsin and were able to follow sublineages that emerged from proliferating CTB at the periphery of the conceptus. A unique form of CTB with some features of STB was detectable at D8, while mature STB was at its zenith at D10. A form of MTB with a mixed MTB/CTB phenotype arose around D10. By D12, STB generation was in decline, CTB had entered a new phase of proliferation, and mature MTB cells had begun to move from the main body of the conceptus. Notably, the MTB transcriptome at D12 indicated enrichment of transcripts associated with IFN signaling, migration, and invasion and up-regulation of HLA-C, HLA-E, and HLA-G. The STB, which is distinct from the STB of later villous STB, had a phenotype consistent with intense protein export and placental hormone production, as well as migration and invasion. The studies show that TB associated with human embryos is in rapid developmental flux during peri-implantation period when it must invade, signal robustly to the mother to ensure that the pregnancy continues, and make first contact with the maternal immune system.


Assuntos
Diferenciação Celular , Trofoblastos/citologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Placenta/citologia , Placenta/metabolismo , Gravidez , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Trofoblastos/metabolismo
3.
Reprod Biol Endocrinol ; 19(1): 141, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517901

RESUMO

Caudal Type Homeobox 2 (CDX2) is a key regulator of trophectoderm formation and maintenance in preimplantation embryos. We previously demonstrated that supplementation of exogenous follistatin, during in vitro culture of bovine IVF embryos, upregulates CDX2 expression, possibly, via alteration of the methylation status of CDX2 gene. Here, we further investigated the effects of exogenous follistatin supplementation on developmental competence and CDX2 methylation in bovine somatic cell nuclear transfer (SCNT) embryos. SCNT embryos were cultured with or without follistatin for 72h, then transferred into follistatin free media until d7 when blastocysts were collected and subjected to CDX2 gene expression and DNA methylation analysis for CDX2 regulatory regions by bisulfite sequencing. Follistatin supplementation significantly increased both blastocyst development as well as blastocyst CDX2 mRNA expression on d7. Three different CpG rich fragments within the CDX2 regulatory elements; proximal promoter (fragment P1, -1644 to -1180; P2, -305 to +126) and intron 1 (fragment I, + 3030 to + 3710) were identified and selected for bisulfite sequencing analysis. This analysis showed that follistatin treatment induced differential methylation (DM) at specific CpG sites within the analyzed fragments. Follistatin treatment elicited hypomethylation at six CpG sites at positions -1374, -279, -163, -23, +122 and +3558 and hypermethylation at two CpG sites at positions -243 and +20 in promoter region and first intron of CDX2 gene. Motif analysis using MatInspector revealed that differentially methylated CpG sites are putative binding sites for key transcription factors (TFs) known to regulate Cdx2 expression in mouse embryos and embryonic stem cells including OCT1, AP2F, KLF and P53, or TFs that have indirect link to CDX2 regulation including HAND and NRSF. Collectively, results of the present study together with our previous findings in IVF embryos support the hypothesis that alteration of CDX2 methylation is one of the epigenetic mechanisms by which follistatin may regulates CDX2 expression in preimplantation bovine embryos.


Assuntos
Blastocisto/efeitos dos fármacos , Fator de Transcrição CDX2/genética , Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Animais , Blastocisto/fisiologia , Fator de Transcrição CDX2/efeitos dos fármacos , Bovinos/embriologia , Células Cultivadas , Clonagem de Organismos/veterinária , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/genética , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Transferência Nuclear/veterinária
4.
Reprod Biomed Online ; 42(6): 1067-1074, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33814309

RESUMO

RESEARCH QUESTION: Is there a risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral exposure and potential cross-contamination from follicular fluid, culture media and vitrification solution within the IVF laboratory using strict patient screening and safety measures? DESIGN: This was a prospective clinical study. All women undergoing transvaginal oocyte retrieval were required to have a negative SARS-CoV-2 RNA test 3-5 days prior to the procedure. Male partners were not tested. All cases used intracytoplasmic sperm injection (ICSI). The first tube of follicular fluid aspirated during oocyte retrieval, drops of media following removal of the embryos on day 5, and vitrification solution after blastocyst cryopreservation were analysed for SARS-CoV-2 RNA. RESULTS: In total, medium from 61 patients, vitrification solution from 200 patients and follicular fluid from 300 patients was analysed. All samples were negative for SARS-CoV-2 viral RNA. CONCLUSIONS: With stringent safety protocols in place, including testing of women and symptom-based screening of men, the presence of SARS-CoV-2 RNA was not detected in follicular fluid, medium or vitrification solution. This work demonstrates the possibility of implementing a rapid laboratory screening assay for SARS-CoV-2 and has implications for safe laboratory operations, including cryostorage recommendations.


Assuntos
Meios de Cultura/análise , Fertilização in vitro , Líquido Folicular/virologia , Laboratórios , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Feminino , Humanos , Recuperação de Oócitos , Segurança do Paciente , Estudos Prospectivos , Injeções de Esperma Intracitoplásmicas , Vitrificação
5.
Biol Reprod ; 102(4): 795-805, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31965149

RESUMO

Characterization of the molecular factors regulating early embryonic development and their functional mechanisms is critical for understanding the causes of early pregnancy loss in monotocous species (cattle, human). We previously characterized a stage specific functional role of follistatin, a TGF-beta superfamily binding protein, in promoting early embryonic development in cattle. The mechanism by which follistatin mediates this embryotropic effect is not precisely known as follistatin actions in cattle embryos are independent of its classically known activin inhibition activity. Apart from activin, follistatin is known to bind and modulate the activity of the bone morphogenetic proteins (BMPs), which signal through SMAD1/5 pathway and regulate several aspects of early embryogenesis in other mammalian species. Present study was designed to characterize the activity and functional requirement of BMP signaling during bovine early embryonic development and to investigate if follistatin involves BMP signaling for its stage specific embryotropic actions. Immunostaining and western blot analysis demonstrated that SMAD1/5 signaling is activated after embryonic genome activation in bovine embryos. However, days 1-3 follistatin treatment reduced the abundance of phosphorylated SMAD1/5 in cultured embryos. Inhibition of active SMAD1/5 signaling (8-16 cell to blastocyst) using pharmacological inhibitors and/or lentiviral-mediated inhibitory SMAD6 overexpression showed that SMAD1/5 signaling is required for blastocyst production, first cell lineage determination as well as mRNA and protein regulation of TE (CDX2) cell markers. SMAD1/5 signaling was also found to be essential for embryotropic actions of follistatin during days 4-7 but not days 1-3 of embryo development suggesting a role for follistatin in regulation of SMAD1/5 signaling in bovine embryos.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Gravidez , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo
6.
Mol Reprod Dev ; 87(9): 998-1008, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32776625

RESUMO

CDX2 plays a crucial role in the formation and maintenance of the trophectoderm epithelium in preimplantation embryos. Follistatin supplementation during the first 72 hr of in vitro culture triggers a significant increase in blastocyst rates, CDX2 expression, and trophectoderm cell numbers. However, the underlying epigenetic mechanisms by which follistatin upregulates CDX2 expression are not known. Here, we investigated whether stimulatory effects of follistatin are linked to alterations in DNA methylation within key regulatory regions of the CDX2 gene. In vitro-fertilized (IVF) zygotes were cultured with or without 10 ng/ml of recombinant human follistatin for 72 hr, then cultured without follistatin until Day 7. The bisulfite-sequencing analysis revealed differential methylation (DM) at specific CpG sites within the CDX2 promoter and intron 1 following follistatin treatment. These DM CpG sites include five hypomethylated sites at positions -1384, -1283, -297, -163, and -23, and four hypermethylated sites at positions -1501, -250, -243, and +20 in the promoter region. There were five hypomethylated sites at positions +3060, +3105, +3219, +3270, and +3545 in intron 1. Analysis of transcription factor binding sites using MatInspector combined with a literature search revealed a potential association between differentially methylated CpG sites and putative binding sites for key transcription factors involved in regulating CDX2 expression. The hypomethylated sites are putative binding sites for FXR, STAF, OCT1, KLF, AP2 family, and P53 protein, whereas the hypermethylated sites are putative binding sites for NRSF. Collectively, our results suggest that follistatin may increase CDX2 expression in early bovine embryos, at least in part, by modulating DNA methylation at key regulatory regions.


Assuntos
Blastocisto/efeitos dos fármacos , Fator de Transcrição CDX2/genética , Bovinos/embriologia , Metilação de DNA/efeitos dos fármacos , Folistatina/farmacologia , Animais , Blastocisto/metabolismo , Fator de Transcrição CDX2/metabolismo , Bovinos/genética , Células Cultivadas , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento
7.
Mol Reprod Dev ; 85(2): 106-116, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29232016

RESUMO

Histone variant H3.3 is encoded by two distinct genes, H3F3A and H3F3B, that are closely associated with actively transcribed genes. H3.3 replacement is continuous and essential for maintaining correct chromatin structure during mouse oogenesis. Upon fertilization, H3.3 is incorporated to parental chromatin, and is required for blastocyst formation in mice. The H3.3 exchange process is facilitated by the chaperone HIRA, particularly during zygote development. We previously demonstrated that H3.3 is required for bovine early embryonic development; here, we explored the mechanisms of its functional requirement. H3F3A mRNA abundance is stable whereas H3F3B and HIRA mRNA are relatively dynamic during early embryonic development. H3F3B mRNA quantity is also considerably higher than H3F3A. Immunofluorescence analysis revealed an even distribution of H3.3 between paternal and maternal pronuclei in zygotes, and subsequent stage-specific localization of H3.3 in early bovine embryos. Knockdown of H3.3 by targeting both H3F3A and H3F3B dramatically decreased the expression of NANOG (a pluripotency marker) and CTGF (Connective tissue growth factor; a trophectoderm marker) in bovine blastocysts. Additionally, we noted that Histone H3 lysine 36 dimethylation and linker Histone H1 abundance is reduced in H3.3-deficient embryos, which was similar to effects following knockdown of CHD1 (Chromodomain helicase DNA-binding protein 1). By contrast, no difference was observed in the abundance of Histone H3 lysine 4 trimethylation, Histone H3 lysine 9 dimethylation, or Splicing factor 3 B1. Collectively, these results established that H3.3 is required for correct epigenetic modifications and H1 deposition, dysregulation of which likely mediate the poor development in H3.3-deficient embryos.


Assuntos
Blastocisto/metabolismo , Bovinos , Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Histonas/genética , Animais , Bovinos/embriologia , Bovinos/genética , Linhagem da Célula/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Masculino , Gravidez , Zigoto/metabolismo
8.
Reprod Biol Endocrinol ; 16(1): 1, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310676

RESUMO

BACKGROUND: TGF-ß signaling pathways regulate several crucial processes in female reproduction. AKT is a non-SMAD signaling pathway regulated by TGF-ß ligands essential for oocyte maturation and early embryonic development in the mouse, but its regulatory role in bovine early embryonic development is not well established. Previously, we demonstrated a stimulatory role for follistatin (a binding protein for specific members of TGF-ß superfamily) in early bovine embryonic development. The objectives of the present studies were to determine the functional role of AKT signaling in bovine early embryonic development and embryotrophic actions of follistatin. METHODS: We used AKT inhibitors III and IV as pharmacological inhibitors of AKT signaling pathway during the first 72 h of in vitro embryo culture. Effects of AKT inhibition on early embryonic development and AKT phosphorylation were investigated in the presence or absence of exogenous follistatin. RESULTS: Pharmacological inhibition of AKT signaling resulted in a significant reduction in early embryo cleavage, and development to the 8- to 16-cell and blastocyst stages (d7). Treatment with exogenous follistatin increased AKT phosphorylation and rescued the inhibitory effect of AKT inhibitors III and IV on AKT phosphorylation and early embryonic development. CONCLUSIONS: Collectively, results suggest a potential requirement of AKT for bovine early embryonic development, and suggest a potential role for follistatin in regulation of AKT signaling in early bovine embryos.


Assuntos
Bovinos/embriologia , Desenvolvimento Embrionário , Folistatina/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Bovinos/metabolismo , Feminino , Folistatina/metabolismo , Folistatina/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
9.
Biol Reprod ; 94(6): 140, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27170440

RESUMO

The CHD family of proteins is characterized by the presence of chromodomains and SNF2-related helicase/ATPase domains, which alter gene expression by modification of chromatin structure. Chd1-null embryos arrest at the peri-implantation stage in mice. However, the functional role of CHD1 during preimplantation development remains unclear, given maternal-derived CHD1 may mask the essential role of CHD1 during this stage in traditional knockout models. The objective of this study was to characterize CHD1 expression and elucidate its functional role in preimplantation development using the bovine model. CHD1 mRNA was elevated after meiotic maturation and remained increased through the 16-cell stage, followed by a sharp decrease at morula to blastocyst stage. Similarly, immunoblot analysis indicated CHD1 protein level is increased after maturation, maintained at high level after fertilization and declined sharply afterwards. CHD1 mRNA level was partially decreased in response to alpha-amanitin (RNA polymerase II inhibitor) treatment, suggesting that CHD1 mRNA in eight-cell embryos is of both maternal and zygotic origin. Results of siRNA-mediated silencing of CHD1 in bovine early embryos demonstrated that the percentages of embryos developing to the 8- to 16-cell and blastocyst stages were both significantly reduced. However, expression of NANOG (inner cell mass marker) and CDX2 (trophectoderm marker) were not affected in CHD1 knockdown blastocysts. In addition, we found that histone variant H3.3 immunostaining is altered in CHD1 knockdown embryos. Knockdown of H3.3 using siRNA resulted in a similar phenotype to CHD1-ablated embryos. Collectively, our results demonstrate that CHD1 is required for bovine early development, and suggest that CHD1 may regulate H3.3 deposition during this period.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário , Histonas/metabolismo , Animais , Bovinos , Feminino
10.
Biol Reprod ; 93(4): 86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289443

RESUMO

The TGF-beta-SMAD signaling pathway is involved in regulation of various aspects of female reproduction. However, the intrinsic functional role of SMADs in early embryogenesis remains poorly understood. Previously, we demonstrated that treatment with follistatin, an activin (TGF-beta superfamily ligand)-binding protein, is beneficial for bovine early embryogenesis and specific embryotropic actions of follistatin are dependent on SMAD4. Because SMAD4 is a common SMAD that can bind both SMAD2/3 and SMAD1/5, the objective of this study was to further determine the intrinsic role of SMAD2/3 in the control of early embryogenesis and delineate if embryotropic actions of follistatin in early embryos are SMAD2/3 dependent. By using a combination of pharmacological and small interfering RNA-mediated inhibition of SMAD2/3 signaling in the presence or absence of follistatin treatment, our results indicate that SMAD2 and SMAD3 are both required for bovine early embryonic development and stimulatory actions of follistatin on 8- to 16-cell and that blastocyst rates, but not early cleavage, are muted when SMAD2/3 signaling is inhibited. SMAD2 deficiency also results in reduced expression of the bovine trophectoderm cell-specific gene CTGF. In conclusion, the present work provides evidence supporting a functional role of SMAD2/3 in bovine early embryogenesis and that specific stimulatory actions of follistatin are not observed in the absence of SMAD2/3 signaling.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Folistatina/farmacologia , Proteína Smad2/genética , Proteína Smad3/genética , Animais , Bovinos , Fator de Crescimento do Tecido Conjuntivo/genética , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Gravidez , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
11.
Reproduction ; 149(2): 203-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25385722

RESUMO

Upstream stimulating factor 1 (USF1) is a basic helix-loop-helix transcription factor that specifically binds to E-box DNA motifs, known cis-elements of key oocyte expressed genes essential for oocyte and early embryonic development. However, the functional and regulatory role of USF1 in bovine oocyte and embryo development is not understood. In this study, we demonstrated that USF1 mRNA is maternal in origin and expressed in a stage specific manner during the course of oocyte maturation and preimplantation embryonic development. Immunocytochemical analysis showed detectable USF1 protein during oocyte maturation and early embryonic development with increased abundance at 8-16-cell stage of embryo development, suggesting a potential role in embryonic genome activation. Knockdown of USF1 in germinal vesicle stage oocytes did not affect meiotic maturation or cumulus expansion, but caused significant changes in mRNA abundance for genes associated with oocyte developmental competence. Furthermore, siRNA-mediated depletion of USF1 in presumptive zygote stage embryos demonstrated that USF1 is required for early embryonic development to the blastocyst stage. A similar (USF2) yet unique (TWIST2) expression pattern during oocyte and early embryonic development for related E-box binding transcription factors known to cooperatively bind USF1 implies a potential link to USF1 action. This study demonstrates that USF1 is a maternally derived transcription factor required for bovine early embryonic development, which also functions in regulation of JY1, GDF9, and FST genes associated with oocyte competence.


Assuntos
Bovinos/embriologia , Desenvolvimento Embrionário/fisiologia , Oócitos/crescimento & desenvolvimento , Fatores Estimuladores Upstream/fisiologia , Animais , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos/química , Embrião de Mamíferos/fisiologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/química , Oogênese/fisiologia , RNA Mensageiro/análise , RNA Interferente Pequeno/farmacologia , Proteína 1 Relacionada a Twist/análise , Proteína 1 Relacionada a Twist/genética , Fatores Estimuladores Upstream/análise , Fatores Estimuladores Upstream/genética
12.
Mol Reprod Dev ; 82(3): 251-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25704641

RESUMO

Brilliant cresyl blue (BCB) is a super-vital stain that has been used to select competent oocytes in different species. One objective of the present study was to assess the relationship between BCB staining, which correlates with an oocyte's developmental potential, and the transcript abundance for select TGFß-superfamily components, SMAD2/3 and SMAD1/5 phosphorylation levels, and oocyte (JY1) and cumulus-cell (CTSB, CTSK, CTSS, and CTSZ) transcript markers in bovine oocytes and/or adjacent cumulus cells. The capacity of exogenous follistatin or JY1 supplementation or cathepsin inhibitor treatment to enhance development of embryos derived from low-quality oocytes, based on BCB staining, was also determined. Cumulus-oocyte complexes (COCs) from abattoir-derived ovaries were subjected to BCB staining, and germinal-vesicle-stage oocytes and cumulus cells were harvested from control, BCB+, and BCB- (low-quality oocyte) groups for real-time PCR or Western-blot analysis. Remaining COCs underwent in vitro maturation, in vitro fertilization, and embryo culture in the presence or absence of the above exogenous supplements. Levels of FST, JY1, BMP15, and SMAD1, 2, 3, and 5 transcripts were higher in BCB+ oocytes whereas CTSB, CTSK, CTSS, and CTSZ mRNA abundance was higher in cumulus cells surrounding BCB- oocytes. Western-blot analysis revealed higher SMAD1/5 and SMAD2/3 phosphorylation in BCB+ than BCB- oocytes. Embryo-culture studies demonstrated that follistatin and cathepsin inhibitor treatment, but not JY-1 treatment, improve the developmental competence of BCB- oocytes. These results contribute to a better understanding of molecular indices of oocyte competence.


Assuntos
Biomarcadores/metabolismo , Células do Cúmulo/fisiologia , Desenvolvimento Embrionário/fisiologia , Oócitos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Análise de Variância , Animais , Western Blotting , Bovinos , Células do Cúmulo/metabolismo , Primers do DNA/genética , Técnicas de Cultura Embrionária , Fertilização in vitro , Folistatina/farmacologia , Perfilação da Expressão Gênica , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Oxazinas , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Smad/metabolismo
13.
Reprod Biol Endocrinol ; 12: 67, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027287

RESUMO

BACKGROUND: We previously demonstrated embryotrophic actions of maternal (oocyte-derived) follistatin during bovine early embryogenesis. Classical actions of follistatin are attributed to inhibition of activity of growth factors including activins and bone morphogenetic proteins (BMP). However, temporal changes in BMP mRNA in early bovine embryos and the effects of exogenous BMP on embryo developmental progression are not understood. The objectives of present studies were to characterize mRNA abundance for select BMP, BMP receptors and BMP receptor associated SMADs during bovine oocyte maturation and early embryogenesis and determine effects of addition of exogenous BMP protein on early development. METHODS: Relative abundance of mRNA for BMP2, BMP3, BMP7, BMP10, SMAD1, SMAD5, ALK3, ALK6, ALK2, BMPR2, ACVR2A and ACVR2B was determined by RT-qPCR analysis of germinal vesicle (GV) and in vitro matured metaphase II (MII) oocytes and in vitro produced embryos collected at pronuclear, 2-cell (C), 4C, 8C, 16C, morula and blastocyst stages. Effects of addition of recombinant human BMP2 (0, 1, 10 and 100 ng/ml) during initial 72 h of embryo culture on early cleavage (within 30 h post insemination), total cleavage, development to 8C-16C and blastocyst stages and blastocyst mRNA abundance for markers of inner cell mass (NANOG) and trophectoderm (CDX2) were also determined. RESULTS: Abundance of mRNA for BMP2, BMP10, SMAD1, SMAD5, ALK3, ALK2, BMPR2 and ACVR2B was elevated in MII oocytes and/or pronuclear stage embryos (relative to GV) and remained elevated through the 8C -16C stages, whereas BMP3, BMP7 and ALK2 mRNAs were transiently elevated. Culture of embryos to the 8C stage in the presence of α-amanitin resulted in increased abundance for all of above transcripts examined relative to untreated 8C embryos. Effects of addition of exogenous BMP2 on early cleavage rates and rates of development to 8C-16C and blastocyst stages were not observed, but BMP2 treatment increased blastocyst mRNA for CDX2 and NANOG. CONCLUSIONS: Abundance of maternally derived mRNAs for above BMP system components are dynamically regulated during oocyte maturation and early embryogenesis. Exogenous BMP2 treatment does not influence progression to various developmental endpoints, but impacts characteristics of resulting blastocysts. Results support a potential role for BMPs in bovine early embryogenesis.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Ectogênese , RNA Mensageiro/metabolismo , Proteínas Smad/metabolismo , Regulação para Cima , Alfa-Amanitina/farmacologia , Animais , Biomarcadores/metabolismo , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Proteína Morfogenética Óssea 2/genética , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Bovinos , Fase de Clivagem do Zigoto/citologia , Fase de Clivagem do Zigoto/efeitos dos fármacos , Fase de Clivagem do Zigoto/metabolismo , Ectogênese/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Técnicas de Maturação in Vitro de Oócitos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Smad/genética , Regulação para Cima/efeitos dos fármacos
14.
Reprod Fertil Dev ; 26(1): 37-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24305175

RESUMO

Despite several decades since the birth of the first test tube baby and the first calf derived from an in vitro-fertilised embryo, the efficiency of assisted reproductive technologies remains less than ideal. Poor oocyte competence is a major factor limiting the efficiency of in vitro embryo production. Developmental competence obtained during oocyte growth and maturation establishes the foundation for successful fertilisation and preimplantation embryonic development. Regulation of molecular and cellular events during fertilisation and embryo development is mediated, in part, by oocyte-derived factors acquired during oocyte growth and maturation and programmed by factors of follicular somatic cell origin. The available evidence supports an important intrinsic role for oocyte-derived follistatin and JY-1 proteins in mediating embryo developmental progression after fertilisation, and suggests that the paracrine and autocrine actions of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15 and follicular somatic cell-derived members of the fibroblast growth factor family impact oocyte competence and subsequent embryo developmental progression after fertilisation. An increased understanding of the molecular mechanisms mediating oocyte competence and stage-specific developmental events during early embryogenesis is crucial for further improvements in assisted reproductive technologies.


Assuntos
Comunicação Autócrina , Cruzamento , Indústria de Laticínios , Embrião de Mamíferos/metabolismo , Fertilidade , Folistatina/metabolismo , Oócitos/metabolismo , Comunicação Parácrina , Reprodução , Técnicas de Reprodução Assistida/veterinária , Animais , Bovinos , Feminino , Fertilidade/genética , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Gravidez , Reprodução/genética , Transdução de Sinais
15.
Cell Biol Int ; 36(9): 779-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22553923

RESUMO

In the 21st century, systems biology is a holistic approach to understand life by the cross-talk study between the genome, Rnome and proteome of a cell. We describe a column-based rapid method for the simultaneous extraction of DNA, RNA, miRNA (microRNA) and proteins from the same experimental sample without prior fractionation, which allows a direct correlation between genomic, epigenomic, transcriptomic and proteomic data. This method provides a simple and effective way to analyse each of these biomolecules without affecting yield and quality. We also show that isolated biomolecules are of the highest purity and compatible for all the respective downstream applications, such as PCR amplification, RT-PCR (reverse transcription-PCR), real-time PCR, reverse Northern blotting, SDS/PAGE and Western blot analysis. The buffers and reagents used in this method are optimized extensively to achieve the cost effective and reliable procedure to separate the functional biomolecules of the cell.


Assuntos
DNA/isolamento & purificação , MicroRNAs/isolamento & purificação , Proteínas/isolamento & purificação , RNA/isolamento & purificação , Linhagem Celular , Cromatografia/métodos , Genômica/métodos , Células HeLa , Humanos , Proteômica/métodos
16.
F S Sci ; 2(1): 33-42, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33521687

RESUMO

OBJECTIVE: To study messenger ribonucleic acid (mRNA) and protein expressions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptors (angiotensin 1-converting enzyme 2 [ACE2] and CD147) and proteases (transmembrane serine protease 2 [TMPRSS2] and cathepsin L [CTSL]) in human oocytes, embryos, and cumulus (CCs) and granulosa cells (GCs). DESIGN: Research study. SETTING: Clinical in vitro fertilization (IVF) treatment center. PATIENTS: Patients undergoing IVF were treated at the Colorado Center for Reproductive Medicine. INTERVENTIONS: Oocytes (germinal vesicle and metaphase II [MII]) and embryos (1-cell [1C] and blastocyst [BL]) were donated for research at the disposition by the patients undergoing IVF. Follicular cells (CC and GC) were collected from women undergoing egg retrieval after ovarian stimulation without an ovulatory trigger for in vitro maturation/IVF treatment cycles. MAIN OUTCOME MEASURES: Presence or absence of ACE2, CD147, TMPRSS2, and CTSL mRNAs detected using quantitative reverse transcription polymerase chain reaction and proteins detected using capillary Western blotting in human oocytes, embryos, and ovarian follicular cells. RESULTS: The quantitative reverse transcription polymerase chain reaction analysis revealed high abundance of ACE2 gene transcripts in germinal vesicle and MII oocytes than in CC, GC, and BL. ACE2 protein was present only in the MII oocytes, and 1C and BL embryos, but other ACE2 protein variants were observed in all the samples. TMPRSS2 protein was present in all the samples, whereas mRNA was observed only in the BL stage. All the samples were positive for CD147 and CTSL mRNA expressions. However, CCs and GCs were the only samples that showed coexpression of both CD147 and CTSL proteins in low abundance. CONCLUSIONS: CCs and GCs are the least susceptible to SARS-CoV-2 infection because of lack of the required combination of receptors and proteases (ACE2/TMPRSS2 or CD147/CTSL) in high abundance. The coexpression of ACE2 and TMPRSS2 proteins in the MII oocytes, zygotes, and BLs demonstrated that these gametes and embryos have the cellular machinery required and, thus, are potentially susceptible to SARS-CoV-2 infection if exposed to the virus. However, we do not know whether the infection occurs in vivo or in vitro in an assisted reproductive technology setting yet.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , RNA Mensageiro , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Angiotensinas , Basigina/genética , Basigina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Catepsina L/genética , Catepsina L/metabolismo , Feminino , Humanos , RNA Mensageiro/genética , SARS-CoV-2/genética , Serina Endopeptidases/metabolismo , Zigoto
17.
Biotechniques ; 68(3): 155-158, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31937114

RESUMO

We developed a simplified workflow of gDNA extraction from ejaculated bovine sperm using a low total number of sperm and a short time frame that yields high-quality DNA suitable for downstream methylation and genome analyses. These techniques have broad implications in human biomedical sciences and agriculture, including clinical diagnoses of infertility, the identification of single-nucleotide polymorphisms and aberrant methylation patterns that can impact fertility, lower embryo development and contribute to heritable disease. The methods described here provide a reliable, simplistic approach for analyzing both the genomic and epigenomic status of whole sperm ejaculates that can be adapted for laboratory diagnostics, clinical reproductive practice and basic research.


Assuntos
Metilação de DNA/genética , DNA/análise , Oligospermia/genética , Análise de Sequência de DNA/métodos , Espermatozoides/química , Animais , Bovinos , DNA/genética , Genoma/genética , Masculino , Oligospermia/veterinária , Reação em Cadeia da Polimerase , Análise do Sêmen , Análise de Sequência de DNA/veterinária
18.
Sci Rep ; 10(1): 9263, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518371

RESUMO

Further refinement of culture media is needed to improve the quality of embryos generated in vitro. Previous results from our laboratory demonstrated that uptake of nutrients by the embryo is significantly less than what is supplied in traditional culture media. Our objective was to determine the impact of reduced nutrient concentrations in culture medium on mouse embryo development, metabolism, and quality as a possible platform for next generation medium formulation. Concentrations of carbohydrates, amino acids, and vitamins could be reduced by 50% with no detrimental effects, but blastocyst development was impaired at 25% of standard nutrient provision (reduced nutrient medium; RN). Addition of pyruvate and L-lactate (+PL) to RN at 50% of standard concentrations restored blastocyst development, hatching, and cell number. In addition, blastocysts produced in RN + PL contained more ICM cells and ATP than blastocysts cultured in our control (100% nutrient) medium; however, metabolic activity was altered. Similarly, embryos produced in the RN medium with elevated (50% control) concentrations of pyruvate and lactate in the first step medium and EAA and Glu in the second step medium were competent to implant and develop into fetuses at a similar rate as embryos produced in the control medium. This novel approach to culture medium formulation could help define the optimal nutrient requirements of embryos in culture and provide a means of shifting metabolic activity towards the utilization of specific metabolic pathways that may be beneficial for embryo viability.


Assuntos
Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Aminoácidos Essenciais/farmacologia , Animais , Blastocisto/citologia , Dipeptídeos/farmacologia , Ácido Edético/farmacologia , Transferência Embrionária , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glucose/farmacologia , Ácido Láctico/farmacologia , Camundongos , Ácido Pirúvico/farmacologia
19.
Toxicol Sci ; 168(2): 610-619, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629257

RESUMO

We previously demonstrated that periconception maternal administration (2 mg/kg body weight each) of cadmium chloride (CdCl2) plus methylmercury (II) chloride (CH3HgCl) impaired glucose homeostasis and increased body weights and abdominal adipose tissue weight of male offspring in the F1 generation. However, transgenerational effects of this exposure have not been studied. Therefore, the effects of periconception Cd+Hg administration on indices of chronic diseases at adulthood in F2-F4 generations were examined. Male and female progeny of Cd+Hg periconceptionally treated females, and offspring of vehicle control females were bred with naïve CD1 mice to obtain F2 offspring, with additional crosses as above to the F4 generation (F1-F4 animals were not administered Cd+Hg). Birth weights and litter size were similar in all generations. Indices of impaired glucose homeostasis were observed in matrilineally descended F2 male offspring, including reduced glucose tolerance, along with increased basal phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307 suggesting altered insulin signaling. Reduced glucose tolerance was also seen in F4 males. Increased body weight and/or abdominal adiposity were observed through the F4 generation in males descended matrilineally from the treated female progenitors. Patrilineally derived F2 females displayed reduced glucose tolerance. Females (F2) patrilineally and matrilineally derived displayed significant kidney enlargement. Periconception administration of cadmium and mercury caused persistent transgenerational effects in offspring through the F4 generation in the absence of continued toxicant exposure, with persistent transgenerational effects inherited specifically through the matrilineal germline.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Metais Pesados/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Tecido Adiposo/embriologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Feminino , Masculino , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fatores Sexuais
20.
Reprod Biol ; 18(3): 267-273, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30196810

RESUMO

Using sex-sorted semen to produce offspring of desired sex is associated with reduced developmental competence in vitro and lower fertility rates in vivo. The objectives of the present study were to investigate the effects of exogenous follistatin supplementation on the developmental competence of bovine embryos produced with sex-sorted semen and possible link between TGF-ß regulated pathways and embryotrophic actions of follistatin. Effects of follistatin on expression of cell lineage markers (CDX2 and Nanog) and downstream targets of SMAD signaling (CTGF, ID1, ID2 and ID3) and AKT phosphorylation were investigated. Follistatin was supplemented during the initial 72 h of embryo culture. Exogenous follistatin restored the in vitro developmental competence of embryos produced with sex-sorted semen to the levels of control embryos produced with unsorted semen, and comparable results were obtained using sorted semen from three different bulls. The mRNA abundance for SMAD signaling downstream target genes, CTGF (SMAD 2/3 pathway) and ID2 (SMAD 1/5 pathway), was lower in blastocysts produced using sex-sorted versus unsorted semen, but mRNA levels for CDX2, NANOG, ID1 and ID3 were similar in both groups. Follistatin supplementation restored CTGF and ID2 mRNA in blastocysts produced using sex-sorted semen to levels of control embryos. Moreover, levels of phosphorylated (p)AKT (Ser-473 and Thr-308) were similar in embryos derived from sex-sorted and unsorted semen, but follistatin treatment increased pAKT levels in both groups. Taken together, results demonstrated that follistatin improves in vitro development of embryos produced with sex-sorted semen and such effects are associated with enhanced indices of SMAD signaling.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro/veterinária , Folistatina/farmacologia , Sêmen , Animais , Bovinos , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA