Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124861, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192712

RESUMO

The aim of this research work is to improve the mechanical and water-resistance properties of soy protein isolate (SPI) biofilm. In this work, 3-aminopropyltriethoxysilane (APTES) coupling-agent modified nanocellulose was introduced into the SPI matrix in the presence of citric acid cross-linker. The presence of amino groups in APTES facilitated the formation of - cross-linked structures with soy protein. The incorporation of a citric acid cross-linker made the cross-linking process more productive, and the surface smoothness of the film was confirmed by a Scanning Electron Microscope (FE-SEM). From the study of the mechanical and thermal properties and water resistance of the film, it was confirmed that the results were highly satisfactory for the modified nanocellulose-incorporated film compared to the non-modified one. Additionally, coating of citral essential oil onto SPI nanocomposite film displayed antimicrobial properties due to the presence of various phenolic groups in the citral oil. The Tensile Strength and Young's Modulus of silane-modified nanocellulose containing film were enhanced by ∼119 % and âˆ¼ 112 %, respectively on incorporation of 1 % APTES-modified nanocellulose. Consequently, this work is expected to offer an effective way for silylated nano-cellulose reinforcing soy protein isolate (SPI)-based bio nanocomposite films for packaging applications. As an example, we have demonstrated one of the applications as wrapping films for packing black grapes.


Assuntos
Proteínas de Soja , Água , Permeabilidade , Celulose , Resistência à Tração , Antibacterianos/farmacologia
2.
J Hazard Mater ; 378: 120751, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220648

RESUMO

Electrospun nanofibers have a wide range of applications due to their unique miniature size and accompanying ultra-high specific surface area. Polyvinyl alcohol(PVA) is a kind of hydrophilic materials, and hence its nanofiber morphology prepared by electrospinning disappeared after solution immersing. In the present work, crosslinked PVA nanofibers were prepared by electrospinning and then employing glutaraldehyde vapor crosslinking to improve their water resistance and mechanical properties. As an application, these nanofibers were used to adsorb Cu2+ and Pb2+ according to varying crosslinking time and different concentrations of ionic solution. It was observed the crosslinked PVA nanofiber films maintained good fiber morphology after adsorption, while the nanofiber morphology of uncrosslinked samples was lost. The stability of the crosslinked nanofiber films in water was improved, the adsorption equilibrium time of Pb2+ decreased from 30 h to 10 h while the equilibrium adsorption time of Cu2+ decreased from 15 h to 5 h, and the tensile strength of the nanofiber films with crosslinking time of 20 h was 7.99 MPa, which was 240% higher than that of the nanofiber with crosslinking time of 1 h, indicating higher efficiency.

3.
Carbohydr Polym ; 188: 85-91, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29525176

RESUMO

With increasing awareness of protecting the environment, the demand for renewable and environmental materials is increasing. In this work, the cellulose single fibers (CSFs) were extracted from the African native Napier grass fibers (NGFs) by chemical process. NGFs and CSFs were characterized for their chemical composition, structure, morphology, crystallinity and thermal properties using, chemical analysis, FTIR, 13C CP/MAS NMR, SEM, XRD and TGA techniques. The resulted CSFs had higher α-cellulose content, crystallinity and thermal stability than the pristine NGFs. SEM images showed cleaner and rough surfaces for the CSFs when compared to those of NGFs. About 69% of the extracted CSFs showed a diameter range between 4 and 10 µm. FTIR and 13C CP/MAS NMR spectra confirmed the removal of lignin and hemicellulose components after chemical treatments.

4.
Int J Biol Macromol ; 96: 518-523, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28034827

RESUMO

In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials.


Assuntos
Umidade , Álcool de Polivinil/química , Amido/química , Fenômenos Mecânicos , Água/química
5.
Int J Biol Macromol ; 99: 223-232, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28237574

RESUMO

Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials.


Assuntos
Cassia/química , Celulose/química , Nanopartículas Metálicas/química , Nanocompostos/química , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Celulose/farmacologia , Nanotecnologia , Substâncias Redutoras/química , Temperatura , Resistência à Tração
6.
Int J Biol Macromol ; 101: 314-320, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28341175

RESUMO

Poly (vinyl alcohol) (PVA)/corn starch blend films with enhanced properties were fabricated by melt processing and montmorillonite (MMT) reinforcing. It was revealed that strong hydrogen bonding occurred between the abundant OH groups of the matrix and polar SiOSi and OH groups of MMT. The highly exfoliated MMT nanolayers were randomly dispersed in the matrix containing MMT lower than 10wt%, whereas the intercalated structure was predominant with MMT content higher than 10wt%. With the increase of MMT, the glass transition temperature as well as equilibrium torque increased. The water sorption decreased and water resistant properties were improved with the incorporation of MMT due to the restricted swelling of the matrix by MMT nanolayers. Significant improvement in strength and flexibility were observed due to the fine dispersion of the MMT layers and the strong interaction between MMT and the matrix. The thermal stability was also improved. The MMT nanolayers could act as the heat and mass transport barriers and retard the thermal decomposition of the composites.


Assuntos
Bentonita/química , Fenômenos Mecânicos , Nanocompostos/química , Álcool de Polivinil/química , Amido/química , Temperatura , Ligação de Hidrogênio , Reologia , Resistência à Tração
7.
Int J Biol Macromol ; 95: 1064-1071, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27984140

RESUMO

In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Nanocompostos/química , Extratos Vegetais/química , Substâncias Redutoras/química , Terminalia/química , Antibacterianos , Cobre/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Embalagem de Alimentos , Química Verde , Temperatura Alta , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/ultraestrutura , Oxirredução , Folhas de Planta/química , Substâncias Redutoras/isolamento & purificação , Resistência à Tração
8.
Carbohydr Polym ; 160: 203-211, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28115095

RESUMO

In this study, we successfully extracted cellulose from borassus fruit fibers by chemical process. The extracted cellulose was dissolved in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Using this solution, regenerated cellulose films were prepared with water as the non solvent. The raw fruit fibers and extracted cellulose were characterized by chemical analysis. The results indicated that the content of the components other than cellulose was significantly decreased during the cellulose extraction process. Further, FTIR, 13CP-MAS NMR, wide-angle X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to provide structural characterization of raw fibers, extracted cellulose and regenerated cellulose films. The average tensile strength, modulus and elongation at break of the regenerated cellulose films were found to be 111±19MPa, 6149±603MPa and 3.1±0.8%, respectively. The notable properties of regenerated cellulose films advocate their effectiveness for various industrial applications.


Assuntos
Arecaceae/química , Celulose/química , Frutas/química , Líquidos Iônicos/química , Resistência à Tração , Difração de Raios X
9.
Carbohydr Polym ; 127: 110-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25965463

RESUMO

Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content.


Assuntos
Plásticos Biodegradáveis/química , Celulose/química , Malvaceae/química , Resistência à Tração , Hidróxido de Sódio/química , Ureia/química
10.
Carbohydr Polym ; 114: 537-545, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25263924

RESUMO

The applications of natural fibers and their microfibrils are increasing rapidly due to their environment benefits, specific strength properties and renewability. In the present work, we successfully extracted cellulose microfibrils from Agave natural fibers by chemical method. The extracted microfibrils were characterized by chemical analysis. The cellulose microfibrils were found to dissolve in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) to larger extent along with little quantity of undissolved microfibrils. Using this solution, the self-reinforced regenerated cellulose composite films were prepared. The raw fiber, extracted cellulose microfibrils and regenerated cellulose composite films were characterized by FTIR, (13)C CP-MAS NMR, XRD, TGA and SEM techniques. The average tensile strength, modulus and elongation at break of the self-reinforced cellulose composite films were found to be 135 MPa, 8150 MPa and 3.2%, respectively. The high values of tensile strength and modulus were attributed to the self-reinforcement of Agave fibers in their generated matrix. These self-reinforced cellulose biodegradable composite films prepared from renewable source can find applications in packaging field.


Assuntos
Celulose/química , Líquidos Iônicos/química , Microfibrilas/química
11.
Carbohydr Polym ; 94(2): 822-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23544638

RESUMO

Uniaxial cellulose fabric Sterculia urens reinforced poly (lactic acid) (PLA) matrix biocomposites were prepared by a two-roll mill. In order to assess the suitability of Sterculia fabric as reinforcement for PLA matrix, the PLA/Sterculia fabric biocomposites were prepared. Tensile parameters, such as maximum stress, Young's modulus and elongation-at-break, were determined using the Universal Testing Machine. The effect of alkali treatment and silane-coupling agent on the tensile properties of PLA-based biocomposites was studied. The results of thermogravimetric analysis show that uniaxial treatment of the fabric can improve the degradation temperature of the biocomposites. Moreover, morphological studies by scanning electron microscopy confirmed that better adhesion between the uniaxial fabric and the matrix was achieved. It was established that standard PLA resins are suitable for the manufacture of S. urens uniaxial fabric reinforced biocomposites with excellent engineering properties, useful for food packaging.


Assuntos
Materiais Biocompatíveis/química , Ácido Láctico/química , Polímeros/química , Sterculia/metabolismo , Álcalis/química , Módulo de Elasticidade , Ácido Láctico/metabolismo , Microscopia Eletrônica de Varredura , Poliésteres , Polímeros/metabolismo , Silanos/química , Temperatura , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA