RESUMO
The effectiveness of active learning on promoting students' academic outcomes and persistence has been established in the literature. However, despite the effort of purposeful change agents, the uptake of active learning in science, technology, engineering, and mathematics (STEM) is slow. While previous research from the chemistry education community has provided insights into the implementation of specific active learning strategies across the United States, the extent to which chemistry instructors leverage these strategies in general remains unknown. This article presents the results of a national survey aimed at exploring introductory chemistry instructors' knowledge and implementation of active learning, variations on this knowledge, and use across tenure statuses and institution types. This paper also aims to address the gap in the literature in our understanding of the characteristics of instructors of these courses. We thus provide a description of instructors' demographics, training, teaching experience, and teaching responsibilities. Our findings reveal that instructors in these courses are prominently males of European descent. Additionally, instructors come into their teaching position with minimal pedagogical training and participate mainly in short training once in their position. While the majority of instructors have knowledge of specific active learning strategies, their consistent implementation remains limited, with lecturing still being the instructional practice of choice. Variations were found between institution types and across tenure statuses within institutions in terms of pedagogical training, use of specific active learning strategies, and proportion of class time spent lecturing. The findings provide a baseline for future studies that aim to assess the effectiveness of interventions fostering the implementation of active learning in introductory chemistry courses and highlight the critical need for improved communication about teaching practices across institutions and tenure statuses.
RESUMO
The undergraduate inorganic chemistry curriculum in the United States mirrors the broad diversity of the inorganic research community and poses a challenge for the development of a coherent curriculum that is thorough, rigorous, and engaging. A recent large survey of the inorganic community has provided information about the current organization and content of the inorganic curriculum from an institutional level. The data reveal shared "core" concepts that are broadly taught, with tremendous variation in content coverage beyond these central ideas. The data provide an opportunity for a community-driven discussion about how the American Chemical Society's Committee on Professional Training's vision of a foundation and in-depth course for each of the five subdisciplines maps onto an inorganic chemistry curriculum that is consistent in its coverage of the core inorganic concepts, yet reflects the diversity and creativity of the inorganic community. The goal of this Viewpoint is to present the current state of the diverse undergraduate curriculum and lay a framework for an effective and engaging curriculum that illustrates the essential role inorganic chemistry plays within the chemistry community.
RESUMO
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.
RESUMO
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning.