Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 13(9B): 3541-55, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19438813

RESUMO

Skeletal stem and progenitor populations provide a platform for cell-based tissue regeneration strategies. Optimized conditions for ex vivo expansion will be critical and use of serum-free culture may allow enhanced modelling of differentiation potential. Maintenance of human foetal femur-derived cells in a chemically defined medium (CDM) with activin A and fibroblast growth factor-2 generated a unique undifferentiated cell population in comparison to basal cultures, with significantly reduced amino acid depletion, appearance and turnover, reduced alkaline phosphatase (ALP) activity and loss of type I and II collagen expression demonstrated by fluorescence immunocytochemistry. Microarray analysis demonstrated up-regulation of CLU, OSR2, POSTN and RABGAP1 and down-regulation of differentiation-associated genes CRYAB, CSRP1, EPAS1, GREM1, MT1X and SRGN as validated by quantitative real-time polymerase chain reaction. Application of osteogenic conditions to CDM cultures demonstrated partial rescue of ALP activity. In contrast, the addition of bone morphogenetic protein-2 (BMP-2) resulted in reduced ALP levels, increased amino acid metabolism and, strikingly, a marked shift to a cobblestone-like cellular morphology, with expression of SOX-2 and SOX-9 but not STRO-1 as shown by immunocytochemistry, and significantly altered expression of metabolic genes (GFPT2, SC4MOL and SQLE), genes involved in morphogenesis (SOX15 and WIF1) and differentiation potential (C1orf19, CHSY-2,DUSP6, HMGCS1 and PPL). These studies demonstrate the use of an intermediary foetal cellular model for differentiation studies in chemically defined conditions and indicate the in vitro reconstruction of the mesenchymal condensation phenotype in the presence of BMP-2, with implications therein for rescue studies, screening assays and skeletal regeneration research.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Meios de Cultura Livres de Soro , Ativinas/metabolismo , Sobrevivência Celular , Meios de Cultura Livres de Soro/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Idade Gestacional , Humanos , Imuno-Histoquímica/métodos , Osteogênese , Fenótipo , Gravidez , Regeneração , Fatores de Tempo
2.
Front Microbiol ; 10: 1552, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379760

RESUMO

Historically, disease progression in animal models of Q fever has been carried out using PCR to monitor the presence of Coxiella burnetii DNA in the host. However, the colonization and dissemination of other bacterial infections in animal models are tracked using viable counts, enabling an accurate assessment of viable bacterial load within tissues. Following recent advances in the culture methods, it has become possible to do the same with C. burnetii. Here we compare and contrast the different information gained by using PCR or viable counts to study this disease. Viable bacteria were cleared from organs much faster than previously reported when assessed by bacterial DNA, but weight loss and clinical signs improved while animals were still heavily infected.

3.
J Tissue Eng ; 5: 2041731414551763, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383172

RESUMO

Stro-1 has proved an efficacious marker for enrichment of skeletal stem and progenitor cells although isolated populations remain heterogeneous, exhibiting variable colony-forming efficiency and osteogenic differentiation potential. The emerging findings that skeletal stem cells originate from adventitial reticular cells have brought two further markers to the fore including CD146 and CD105 (both primarily endothelial and perivascular). This study has compared CD146-, CD105- and Stro-1 (individual and in combination)-enriched human bone marrow stromal cell subsets and assessed whether these endothelial/perivascular markers offer further selection over conventional Stro-1. Fluorescent cell sorting quantification showed that CD146 and CD105 both targeted smaller (2.22% ± 0.59% and 6.94% ± 1.34%, respectively) and potentially different human bone marrow stromal cell fractions compared to Stro-1 (16.29% ± 0.78%). CD146+, but not CD105+, cells exhibited similar alkaline phosphatase-positive colony-forming efficiency in vitro and collagen/proteoglycan deposition in vivo to Stro-1+ cells. Molecular analysis of a number of select osteogenic and potential osteo-predictive genes including ALP, CADM1, CLEC3B, DCN, LOXL4, OPN, POSTN and SATB2 showed Stro-1+ and CD146+ populations possessed similar expression profiles. A discrete human bone marrow stromal cell fraction (2.04% ± 0.41%) exhibited positive immuno-labelling for both Stro-1 and CD146. The data presented here show that CD146+ populations are comparable but not superior to Stro-1+ populations. However, this study demonstrates the critical need for new candidate markers with which to isolate homogeneous skeletal stem cell populations or skeletal stem cell populations which exhibit homogeneous in vitro/in vivo characteristics, for implementation within tissue engineering and regenerative medicine strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA