RESUMO
The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.
Assuntos
Biodiversidade , Modelos Biológicos , Árvores/fisiologia , América do Sul , Clima TropicalRESUMO
Cardiovascular diseases represent a major cause of disability and death worldwide. Therapeutics are available, but they often have unsatisfactory results and may produce side effects. Alternative treatments based on the use of natural products have been extensively investigated, because of their low toxicity and side effects. Marine organisms are prime candidates for such products, as they are sources of numerous and complex substances with ecological and pharmacological effects. In this work, we investigated, through in vitro experiments, the effects of three diterpenes (pachydictyol A, isopachydictyol A and dichotomanol) from the Brazilian marine alga, Dictyota menstrualis, on platelet aggregation and plasma coagulation. Results showed that dichotomanol inhibited ADP- or collagen-induced aggregation of platelet-rich plasma (PRP), but failed to inhibit washed platelets (WP). In contrast, pachydictyol A and isopachydictyol A failed to inhibit the aggregation of PRP, but inhibited WP aggregation induced by collagen or thrombin. These diterpenes also inhibited coagulation analyzed by the prothrombin time and activated partial thromboplastin time and on commercial fibrinogen. Moreover, diterpenes inhibited the catalytic activity of thrombin. Theoretical studies using the Osiris Property Explorer software showed that diterpenes have low theoretical toxicity profiles and a drug-score similar to commercial anticoagulant drugs. In conclusion, these diterpenes are promising candidates for use in anticoagulant therapy, and this study also highlights the biotechnological potential of oceans and the importance of bioprospecting to develop medicines.
Assuntos
Anticoagulantes/farmacologia , Diterpenos/farmacologia , Phaeophyceae/química , Inibidores da Agregação Plaquetária/farmacologia , Anticoagulantes/isolamento & purificação , Coagulação Sanguínea/efeitos dos fármacos , Colágeno/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Humanos , Hidrólise , Técnicas In Vitro , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/isolamento & purificação , Trombina/farmacologiaRESUMO
The ischemic disorders, in which platelet aggregation and blood coagulation are involved, represent a major cause of disability and death worldwide. The antithrombotic therapy has unsatisfactory performance and may produce side effects. So, there is a need to seek molecules with antithrombotic properties. Marine organisms produce substances with different well defined ecological functions. Moreover, some of these molecules also exhibit pharmacological properties such as antiviral, anticancer, antiophidic and anticoagulant properties. The aim of this study was to evaluate, through in vitro tests, the effect of two extracts of brown algae and ten marine sponges from Brazil on platelet aggregation and blood coagulation. Our results revealed that most of the extracts were capable of inhibiting platelet aggregation and clotting measured by plasma recalcification tests, prothrombin time, activated partial thromboplastin time, and fibrinogenolytic activity. On the other hand, five of ten species of sponges induced platelet aggregation. Thus, the marine organisms studied here may have molecules with antithrombotic properties, presenting biotechnological potential to antithrombotic therapy. Further chemical investigation should be conducted on the active species to discover useful molecules for the development of new drugs to treat clotting disorders.
Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Phaeophyceae/química , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Poríferos/química , Animais , Coagulação Sanguínea/efeitos dos fármacos , Brasil , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Agregação Plaquetária/efeitos dos fármacos , Tempo de ProtrombinaRESUMO
*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.
Assuntos
Secas , Árvores/crescimento & desenvolvimento , Clima Tropical , Adaptação Fisiológica , Biomassa , Brasil , Ecossistema , Modelos Biológicos , Caules de Planta/crescimento & desenvolvimento , Chuva , Estresse Fisiológico , Fatores de Tempo , Água , Madeira/crescimento & desenvolvimentoRESUMO
Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Assuntos
Biomassa , Secas , Ecossistema , Árvores , Atmosfera , Brasil , Carbono , Dióxido de Carbono , Clima , América do Sul , Árvores/crescimento & desenvolvimento , Clima TropicalRESUMO
The ability of crude extracts of the brown seaweed Spatoglossum schröederi to counteract some of the biological activities of Lachesis muta snake venom was evaluated. In vitro assays showed that only the extract of S. schröederi prepared in ethyl acetate was able to inhibit the clotting of fibrinogen induced by L. muta venom. On the other hand, all extracts were able to inhibit partially the hemolysis caused by venom and those prepared in dichloromethane or ethyl acetate fully neutralized the proteolysis and hemorrhage produced by the venom. Moreover, the dichloromethane or ethyl acetate extracts inhibited the hemolysis induced by an isolated phospholipase A2 from L. muta venom, called LM-PLA2-I. In contrast, the hexane extract failed to protect mice from hemorrhage or to inhibit proteolysis and clotting. These results show that the polarity of the solvent used to prepare the extracts of S. schröederi algae influenced the potency of the inhibitory effect of the biological activities induced by L. muta venom. Thus, the seaweed S. schröederi may be a promising source of natural inhibitors of the enzymes involved in biological activities of L. muta venom.
RESUMO
Four extracts from the marine red alga Plocamium brasiliense (Greville) M.A.Howe & W.R.Taylor were prepared to identify and characterize their potential allelopathic effects on seed germination, radicle elongation and hypocotyl development of the weeds Mimosa pudica L. and Senna obtusifolia (L.) Irwin & Barneby. The four extracts were prepared in a sequence of solvents of increasing polarity: n-hexane, dichloromethane, ethyl acetate and ethanol/water (7:3). The germination bioassay was carried out at 25 °C with a 12 h photoperiod and the radicle elongation and hypocotyl development at 25 °C with a 24 h photoperiod. The dichloromethane extract showed inhibitory effects on seed germination of both plants (35 and 14%, respectively, in M. pudica and S. obtusifolia), radical germination (52 and 41.7%, respectively) and hypocotyl development (17.1 and 25.5%, respectively). Given the high sensitivity of this parameter to the potential allelopathic effects and the insufficient number of references found in the literature, these results are expected to stimulate new tests with other species of marine algae. Given the high sensitivity of the method for the detection of allelopathic potential, the species P. brasiliense emerges as a possible source of allelopathic substances against weed species. The results are attributed to the chemical composition, especially in relation to the presence of halogenated monoterpenes.