Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nutr Neurosci ; 25(12): 2479-2489, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34719357

RESUMO

BACKGROUND: Diet-induced obesity is associated with premature cognitive decline. Elevated consumption of fats and sugars in humans and rodents has been associated with deficits in recognition memory, which is modulated by the hippocampus. Alterations in excitatory and inhibitory neurotransmitters in this area have been observed after hypercaloric diets, but the effects on episodic-like memory are not conclusive. OBJECTIVE: To investigate the effects of hypercaloric diets on memory and their relationship with γ-aminobutyric acid (GABA), glutamate and glutamine and their genetic expression in the hippocampus. DESIGN: A control diet (CD), a high-fat diet (HFD) and a combined high-fat-high-fructose diet (HFFrD) were administered to 30 C57BL/6 adult mice for 10 weeks. The discrimination indexes and exploration time of the novel object recognition (NOR) and novel object location (NOL) tasks were evaluated and GABA, glutamate and glutamine concentrations and their genetic expression were obtained from the hippocampus. RESULTS: The HFFrD induced lower discrimination indexes, decreased exploration time in the recognition memory tasks, and lowered the concentrations of glutamate and glutamine, and HFD increased their expression in the hippocampus. CONCLUSIONS: These findings suggest that a possible adaptative long-term mechanism in the hippocampal neurotransmitters, and this possibility may underlie the episodic-like memory deficits in mice fed HFD and HFFrD.


Assuntos
Dieta Hiperlipídica , Ácido Glutâmico , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Ácido Glutâmico/metabolismo , Glutamina , Frutose/efeitos adversos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Cent Eur J Immunol ; 45(1): 29-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425677

RESUMO

INTRODUCTION: Type 2 diabetes mellitus (T2DM) is characterized by chronic inflammation, in which different types of immune cells participate, such as TH17 cells and Treg cells. The aim of this study was to determine the relationship between Treg and Th17 in patients with different times of T2DM progression. MATERIAL AND METHODS: Nineteen control subjects and 40 patients with T2DM were included. T2DM patients were classified into two groups: the first group consisted of twenty patients with less than10 years of disease progression (T2DM < 10), and the second group included 20 patients with a disease progression of 10 years or more (T2DM ≥ 10). Additionally, an analysis was performed according to the metabolic control, depending on HbA1c levels. The peripheral blood ratio of both Th17 and Treg cells was measured by standard flow cytometry protocols. RESULTS: No significant difference was found in Th17 cells of patients with T2DM < 10 or T2DM ≥ 10 and controls. With respect to CD4+CD25+FoxP3+ and CD4+CD25h Treg cells, a significant decrease was observed in patients with T2DM ≥ 10, mainly in patients with poor or moderate metabolic control. Statistical analysis performed in all patients with T2DM revealed a decrease in three cell subsets as well a negative correlation between Th17 cells and total cholesterol, CD4+CD25h cells with glucose and HbA1c levels, while a positive correlation was observed between CD4+CD25h cells and BMI. CONCLUSIONS: A decrease on both Treg and Th17 cell subsets in T2DM patients was observed suggesting that the metabolic decontrol and the progression time of T2DM could modify the proportions of Th17 and Treg cells.

3.
Gac Med Mex ; 154(1): 80-86, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-29420521

RESUMO

Consumption of hypercaloric diets leads to increase of free fatty acids (FFA), pro-inflammatory cytokines and production of oxygen and nitrogen reactive species. These alterations induce oxidative and nitrosative stress causing dysfunction of tissues and consequently the development of chronic diseases. Therefore, it is important to decrease oxidative stress and thus preventing the development of these diseases. Strawberry has a lot of Vitamin C and polyphenols, compounds with excellent antioxidant properties, which may be an option for reducing oxidative stress and therefore to prevent the development of some diseases. Studies conducted in vitro in animal models and clinical studies support that this fruit can be a good alternative to reduce oxidative stress and thus reducing and/or preventing the development of diseases in humans.


El consumo de dietas hipercalóricas conlleva al aumento de ácidos grasos libres (AGL), citocinas proinflamatorias y producción de especies reactivas de oxígeno y de nitrógeno. Estas alteraciones inducen estrés oxidativo y nitrosativo que daña a los tejidos causando disfunción de los mismos y en consecuencia se pueden desarrollar enfermedades crónicas. Por lo tanto, es importante disminuir el estrés oxidativo y con ello prevenir el desarrollo de estas enfermedades. La fresa es un fruto rico en vitamina C y polifenoles, compuestos con excelentes propiedades antioxidantes, por lo que puede ser una opción para la disminución del estrés oxidativo y por lo tanto, para prevenir el desarrollo de algunas enfermedades. Los estudios realizados in vitro, en modelos animales y estudios clínicos sustentan que la fresa puede ser una buena alternativa para disminuir el estrés oxidativo y así atenuar y/o prevenir el desarrollo de enfermedades en el humano.


Assuntos
Doença Crônica/prevenção & controle , Fragaria , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Polifenóis/farmacologia , Animais , Modelos Animais de Doenças , Ingestão de Energia , Humanos
4.
Reprod Biol Endocrinol ; 15(1): 26, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376894

RESUMO

BACKGROUND: The purpose of this study was to determine the mitochondrial content, and the oxidative and nitrosative stress of the placenta in women with gestational diabetes mellitus (GDM). METHODS: Full-term placentas from GDM and healthy pregnancies were collected following informed consent. The lipid peroxidation (TBARS) and oxidized protein (carbonyls) levels were determined by spectrophotometry, and 3-nitrotyrosine (3-NT), subunit IV of cytochrome oxidase (COX4), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and actin were determined by western blot, whereas ATPase activity was performed by determining the adenosine triphosphate (ATP) consumption using a High-performance liquid chromatography (HPLC) system. RESULTS: TBARS and carbonyls levels were lower in the placentas of women with GDM compared with the normal placentas (p < 0.001 and p < 0.05, respectively). Also, 3-NT/actin and AMPK/actin ratios were higher in GDM placentas than in the normal placentas (p = 0.03 and p = 0.012, respectively). Whereas COX4/actin ratio and ATPase activity were similar between GDM placentas and those controls. CONCLUSIONS: These data suggest that placentas with GDM are more protected against oxidative damage, but are more susceptible to nitrosative damage as compared to normal placentas. Moreover, the increased expression levels of AMPK in GDM placentas suggest that AMPK might have a role in maintaining the mitochondrial biogenesis at normal levels. TRIAL REGISTRATION: HGRL28072011 . Registered 28 July 2011.


Assuntos
Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Mitocôndrias/metabolismo , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Adulto , Feminino , Humanos , Gravidez , Adulto Jovem
5.
Biol Res ; 49: 15, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26927389

RESUMO

BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.


Assuntos
Dieta Hiperlipídica , Lobo Frontal/química , Hipocampo/química , Ácido gama-Aminobutírico/análise , Animais , Glicemia/análise , Peso Corporal , Comportamento Alimentar , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Obesidade/metabolismo , Ratos Wistar , Valores de Referência , Aumento de Peso , Ácido gama-Aminobutírico/metabolismo
6.
Biol Res ; 47: 74, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25723052

RESUMO

BACKGROUND: Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO) synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice. RESULTS: Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS) levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice. CONCLUSIONS: These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus Tipo 2/dietoterapia , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Adenosina Trifosfatases/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Suplementos Nutricionais , Modelos Animais de Doenças , Genótipo , Hiperglicemia/dietoterapia , Hiperglicemia/etiologia , Masculino , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Seleção Artificial
7.
Int J Mol Sci ; 15(6): 9579-93, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886809

RESUMO

Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins. Twenty five proteins were identified by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and their interactions were analyzed using search tool for the retrieval of interacting genes/proteins (STRING) and database for annotation, visualization and integrated discovery (DAVID). Some of these proteins were Pancreatic α-amylase, Cytochrome b5, Lithostathine-1, Lithostathine-2, Chymotrypsinogen B, Peroxiredoxin-4, Aspartyl aminopeptidase, Endoplasmin, and others, which are involved in the metabolism of carbohydrates and proteins, as well as in oxidative stress, and inflammation. Remarkably, these are mostly endoplasmic reticulum proteins related to peptidase activity, i.e., they are involved in proteolysis, glucose catabolism and in the tumor necrosis factor-mediated signaling pathway. These results suggest mechanisms for insulin resistance, and the chronic inflammatory state observed in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Pâncreas/patologia , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica/métodos , Animais , Diabetes Mellitus Tipo 2/patologia , Eletroforese em Gel Bidimensional/métodos , Feminino , Camundongos , Pâncreas/metabolismo , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
Molecules ; 19(6): 8289-302, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24945581

RESUMO

Turmeric (Curcuma longa) is a rhizomatous herbaceous perennial plant of the ginger family which has been used to treat biliary disorders, anorexia, cough, rheumatism, cancer, sinusitis, hepatic disorders, hyperglycemia, obesity, and diabetes in both Ayurvedic and Traditional Chinese Medicine. Suggested mechanisms of action include the modulation of signal transduction cascades and effects on gene expression, however they remain to be elucidated. In this study, the expression of some proteins responsible for transcription factors, inflammation, and metabolic control were evaluated by western blot in 15-week-old db/db mice livers treated with curcumin 0.75% mixed in their diet for 8 weeks. In addition, nitrosative stress was evaluated. Curcumin increased the expression of AMPK and PPARγ, and diminished NF-κB protein in db/db mice. However, it did not modify the expression of PGC-1α or SIRT1. Nitrosative stress present in db/db mice livers was determined by a unique nitrotyrosylated protein band (75 kDa) and was not reverted with curcumin. In conclusion, curcumin regulates the expression of AMPK, PPARγ, and NF-κB; suggesting a beneficial effect for treatment of T2DM complications. In order to observe best beneficial effects it is desirable to administer curcumin in the earlier states of T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Animais , Masculino , Camundongos
9.
Gac Med Mex ; 150 Suppl 1: 88-94, 2014 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-25643683

RESUMO

The incidence of type 2 diabetes mellitus (T2D) is growing rapidly due to aging, urbanization, changes in lifestyle, and increasing prevalence of obesity. In T2D, chronic hyperglycemia leads to macro and micro vascular complications, which currently are serious problem for health systems worldwide. The complexity of T2D and its complications requires study skills of high performance that provide important information in the understanding of the pathophysiology of the disease and biological pathways involved in development of T2D and its complications. In this work we describe the recent contributions of proteomics in the study of T2D and discuss its importance in the identification of therapeutic targets and biomarkers that help to improve the diagnosis of T2D, monitor the disease progression, and the development of new drugs to improve treatment and reduce its complications.

10.
J Asian Nat Prod Res ; 15(8): 905-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23782307

RESUMO

Oxidative stress plays a key role in obesity and diabetes-related mitochondrial dysfunction. Mitochondrial dysfunction is characterized by increased oxidative damage, nitric oxide (NO) synthesis, and a reduced ratio of adenosine-5'-triphosphate (ATP) production/oxygen consumption. Curcumin represents a potential antioxidant and anti-inflammatory agent. In this study, our objective was to determine the effect of curcumin treatment on oxidative stress and mitochondrial dysfunction in high-fat diet (HFD)-induced obese mice (OM). These results suggest that curcumin treatment increased oxygen consumption and significantly decreased lipid and protein oxidation levels in liver mitochondria isolated from HFD-induced OM compared with those in the untreated OM (UOM). In kidney mitochondria, curcumin treatment significantly increased oxygen consumption and decreased lipid and protein peroxidation levels in HFD-induced OM when compared with those in UOM. Curcumin treatment neither has any effect on body weight gain nor have any effects on mitochondrial NO synthesis. These findings suggest that obesity induces oxidative stress and mitochondrial dysfunction, whereas curcumin may have a protective role against obesity-induced oxidative stress and mitochondrial dysfunction.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/química , Curcumina/química , Dieta Hiperlipídica , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Obesos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estrutura Molecular , Óxido Nítrico/biossíntese , Obesidade/metabolismo , Oxirredução
11.
J Microbiol ; 61(12): 1043-1062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38114662

RESUMO

Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.


Assuntos
Mucor , Fatores de Transcrição , Fatores de Transcrição/genética , Virulência/genética , Estresse Oxidativo , Proteínas Fúngicas/genética
12.
J Fungi (Basel) ; 9(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132728

RESUMO

This study analyzed the role of blood serum in enhancing the mitochondrial metabolism and virulence of Mucorales through rhizoferrin secretion. We observed that the spores of clinically relevant Mucorales produced in the presence of serum exhibited higher virulence in a heterologous infection model of Galleria mellonella. Cell-free supernatants of the culture broth obtained from spores produced in serum showed increased toxicity against Caenorhabditis elegans, which was linked with the enhanced secretion of rhizoferrin. Spores from Mucoralean species produced or germinated in serum showed increased respiration rates and reactive oxygen species levels. The addition of non-lethal concentrations of potassium cyanide and N-acetylcysteine during the aerobic or anaerobic growth of Mucorales decreased the toxicity of the cell-free supernatants of the culture broth, suggesting that mitochondrial metabolism is important for serum-induced virulence. In support of this hypothesis, a mutant strain of Mucor lusitanicus that lacks fermentation and solely relies on oxidative metabolism exhibited virulence levels comparable to those of the wild-type strain under serum-induced conditions. Contrary to the lower virulence observed, even in the serum, the ADP-ribosylation factor-like 2 deletion strain exhibited decreased mitochondrial activity. Moreover, spores produced in the serum of M. lusitanicus and Rhizopus arrhizus that grew in the presence of a mitophagy inducer showed low virulence. These results suggest that serum-induced mitochondrial activity increases rhizoferrin levels, making Mucorales more virulent.

13.
Curr Pharm Des ; 28(38): 3127-3139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278446

RESUMO

Poor dietary habits such as overconsumption of hypercaloric diets characterized by a high content of fructose and fat are related to metabolic abnormalities development such as obesity, diabetes, and dyslipidemia. Accumulating evidence supports the hypothesis that if energy intake gradually exceeds the body's ability to store fat in adipose tissue, the prolonged metabolic imbalance of circulating lipids from endogenous and exogenous sources leads to ectopic fat distribution in the peripheral organs, especially in the heart, liver, and kidney. The kidney is easily affected by dyslipidemia, which induces lipid accumulation and reflects an imbalance between fatty acid supply and fatty acid utilization. This derives from tissue lipotoxicity, oxidative stress, fibrosis, and inflammation, resulting in structural and functional changes that lead to glomerular and tubule-interstitial damage. Some authors indicate that a lipid-lowering pharmacological approach combined with a substantial lifestyle change should be considered to treat chronic kidney disease (CKD). Also, the new therapeutic target identification and the development of new drugs targeting metabolic pathways involved with kidney lipotoxicity could constitute an additional alternative to combat the complex mechanisms involved in impaired kidney function. In this review article, we first provide the pathophysiological evidence regarding the impact of hypercaloric diets, such as high-fat diets and high-fructose diets, on the development of metabolic disorders associated with impaired renal function and the molecular mechanisms underlying tissue lipid deposition. In addition, we present the current progress regarding translational strategies to prevent and/or treat kidney injury related to the consumption of hypercaloric diets.


Assuntos
Dislipidemias , Doenças Metabólicas , Humanos , Doenças Metabólicas/metabolismo , Dieta Hiperlipídica , Frutose/efeitos adversos , Frutose/metabolismo , Rim/metabolismo , Dislipidemias/metabolismo , Ácidos Graxos , Lipídeos
14.
J Proteomics ; 263: 104595, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490921

RESUMO

Increased fructose consumption has been associated with the development of metabolic diseases due to the modification in protein expression, altering metabolic and signaling pathways. Curcumin is a natural compound with a regulatory effect on genes and metabolic pathways. To identify the fructose-induced protein expression changes and the effect of curcumin on the change of protein expression in the liver of mice fed a standard diet and a high fructose diet, to elucidate the global role of curcumin. Four groups (n = 4/group) of male mice (C57BL6J) of six-weeks-old were formed. One group received a standard diet (C); another received curcumin at 0.75% w/w in the feed (C + C); one more received 30% w/v fructose in drinking water (F); and one group received 30% w/v fructose in drinking water and 0.75% w/w curcumin in food (F + C); for 15 weeks. Proteomic analysis was performed by LC-MS/MS, using the label-free technique with the MaxQuant programs for identification and Perseus for expression change analysis. Differentially expressed proteins (fold change ≥1.5 and p < 0.5) were analyzed by gene ontology and KEGG. A total of 1047 proteins were identified, of which 113 changed their expression in mice fed fructose, compared to the control group, and curcumin modified the expression of 64 proteins in mice fed fructose and curcumin compared to mice that only received fructose. Curcumin prevented the change of expression of 13 proteins involved in oxidative phosphorylation (NDUFB8, NDUFB3, and ATP5L) in the cellular response to stress (PSMA5, HIST1H1D) and lipid metabolism (THRSP, DGAT1, ECI1, and ACOT13). Curcumin in mice fed the standard diet increased the expression of proteins related to oxidative phosphorylation, ribosomes, and PPAR pathways. In addition to fructose, increased expression of proteins involved in oxidative phosphorylation, ribosomes, lipid metabolism, and carbon metabolism. However, curcumin prevented expression change in 13 hepatic proteins of fructose-fed mice involved in oxidative phosphorylation, cellular stress response, and lipid metabolism. SIGNIFICANCE: Curcumin is a natural compound with a regulatory effect on proteins and metabolic pathways. So, curcumin prevents the change of expression in 13 hepatic proteins of fructose-fed mice involved in oxidative phosphorylation, cellular stress response and lipid metabolism, as a supplement with protector activity on fructose-induced toxic effects.


Assuntos
Curcumina , Água Potável , Animais , Cromatografia Líquida , Curcumina/farmacologia , Dieta , Água Potável/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Fosforilação Oxidativa , Estresse Oxidativo , Proteômica , Espectrometria de Massas em Tandem , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/farmacologia
15.
Curr Pharm Des ; 28(21): 1769-1778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35362381

RESUMO

BACKGROUND: A high fructose diet (HFD) induces protein glycation. The latter is related to a higher risk of cardiovascular disease. Curcumin is a natural pleiotropic compound that may possess antiglycant properties. OBJECTIVE: The study aims to analyze the effect of curcumin on the content of glycated proteins in the hearts of 6-week-old mice fed with a HFD for 15 weeks. METHODS: Mice were allocated into four groups (n = 6/group): a control group that received a standard diet (CT); a group that received 30% w/v fructose in water (F); a group that received 0.75% w/w curcumin supplemented in food (C); a group that received 30% w/v fructose in water and 0.75% w/w curcumin supplemented in food (F+C). The content of glycated proteins in the heart was determined by Western Blot (whereas the spots were detected by 2D-PAGE) using anti-AGE and anti-CML antibodies. Densitometric analysis was performed using the ImageLab software. Glycated proteins were identified by MALDI-TOF-MS, and an ontological analysis was performed in terms of biological processes and molecular function based on the STRING and DAVID databases. RESULTS: Fourteen glycated protein spots were detected, two of them with anti-AGE and the other 12 with anti- CML. In total, eleven glycated proteins were identified, out of which three had decreased glycation levels due to curcumin exposure. The identified proteins participate in processes such as cellular respiration, oxidative phosphorylation, lipid metabolism, carbohydrate metabolism, the tricarboxylic acid cycle (TAC), and the organization of intermediate filaments. CONCLUSION: Curcumin decreased the fructose-induced glycation level of the ACO2, NDUFS7, and DLAT proteins.


Assuntos
Curcumina , Frutose , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Curcumina/farmacologia , Dieta , Frutose/farmacologia , Camundongos , Água
16.
Metab Syndr Relat Disord ; 19(5): 305-311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33646054

RESUMO

Introduction: Hypercaloric diets induce oxidative stress, and consequently induce hyperglycemia and type 2 diabetes mellitus (T2DM). Thus, oxidative stress is significantly increased in T2DM, leading to oxidative damage to brain, which might contribute to cognitive deficits and neurodegenerative diseases. Therefore, reducing the oxidative stress is important to preserving cognitive functions, and it has been suggested that phytosterols may reduce the oxidative stress. Objective: The objective of the present study was to determine the effects of phytosterols derived from corn on oxidative damage in the cerebellum, frontal cortex, and hippocampus of diabetic db/db mice. Materials and Methods: A phytosterol extract was isolated from yellow corn (Zea mays L.) and 100 mg/kg of the extract was administrated daily to diabetic mice for 8 weeks. At the end of the treatment period, tissues were isolated to determine the levels of oxidized lipid and protein. Results: The phytosterol treatment increased body weight in diabetic db/db mice, but this treatment did not have any effects on body weight in wild-type mice. Moreover, the phytosterol treatment decreased levels of oxidized lipids in the cerebellum, frontal cortex, and hippocampus, and also decreased the levels of oxidized proteins in the cerebellum and frontal cortex in diabetic db/db mice. Conclusion: These important results show that phytosterol treatment can reduce oxidative damage in the brains of diabetic mice.


Assuntos
Estresse Oxidativo , Fitosteróis , Extratos Vegetais , Animais , Encéfalo/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fitosteróis/farmacologia , Extratos Vegetais/farmacologia
17.
Fungal Biol ; 124(7): 619-628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540185

RESUMO

Mucor circinelloides is an opportunistic dimorphic pathogen, with the dimorphic process controlled in parts by fermentative and oxidative metabolisms, which lead to yeast or mycelial growth, respectively. Dimorphic transition is important for pathogenesis since the mycelium represents the virulent morphology. We previously reported that the deletion of arl1 or arl2 stimulate anaerobic germination in M. circinelloides, suggesting an augmented fermentative metabolism. In the present study, we demonstrate that the heterokaryon Δarl1(+)(-) and homokaryon Δarl2 strains contain low number of mitochondria, which possibly results in a dysfunctional oxidative metabolism, marked by a low oxygen consumption in glucose and poor growth in glycerol as the unique carbon source. This dysfunction is compensated for by an increase in the glycolysis and fermentation in aerobic conditions, demonstrating growth kinetics similar to that in the wild-type strain. Moreover, as a consequence a high fermentative activity, the Δarl1(+)(-) and Δarl2 strains possibly increased the yeast cell growth during low oxygen concentrations in presence of glucose. To the best of our knowledge, this is the first study to demonstrate the control of members of Arf family on the mitochondrial population in a Mucor species.


Assuntos
Fatores de Ribosilação do ADP , Homeostase , Proteínas de Membrana , Mitocôndrias , Mucor , Fatores de Ribosilação do ADP/metabolismo , Homeostase/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mucor/genética , Mucor/metabolismo
18.
Nat Prod Res ; 33(10): 1527-1530, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29313362

RESUMO

Obesity is currently a public health problem worldwide. Recently, non-reducing carbohydrates, that include ß(2→1) and ß(2→6) linkages in their structure, have been of particular interest in the field of obesity because they are involved in lipid metabolism. Some of these are agave fructans (AF) and oligofructose (OF). In this study, we evaluated both AF and OF on oxidative stress (OS) markers in the brain of overweight mice (OM). AF and OF decreased TBARS levels and carbonyls at different levels in hippocampus (HP), frontal cortex (FC) and cerebellum (CB) of OM. The results indicated that fructans may have anti-oxidative potential and can be used as an alternative treatment for the prevention of the consequences of this pathology.


Assuntos
Agave/química , Encéfalo/efeitos dos fármacos , Frutanos/farmacologia , Oligossacarídeos/farmacologia , Sobrepeso/dietoterapia , Animais , Encéfalo/metabolismo , Restrição Calórica , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Sobrepeso/etiologia , Sobrepeso/metabolismo , Estresse Oxidativo , Prebióticos , Carbonilação Proteica/efeitos dos fármacos
19.
Clin Interv Aging ; 14: 2055-2062, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819387

RESUMO

INTRODUCTION: Malnutrition is common in haemodialysis patients and closely related to morbidity and mortality. We evaluated the effect of twelve weeks of supplementation with resveratrol and curcumin on recovery of bone and muscle mass and protein oxidation, lipid peroxidation on patients with chronic kidney disease and iron overload undergoing hemodialysis, we performed a randomized, double-blind, placebo-controlled trial. METHODS: We included a total of 40 patients, were randomly assigned to two groups, 20 to the group with antioxidant supplementation (Resveratrol + Curcumin) (Group A), treated with a daily oral dose of 500 mg of Resveratrol and 500 mg of Curcumin, and 20 to the control group treated with placebo (Group B). RESULTS: Significant differences were found in the body composition of the patients between both groups. There was a significant difference in Body Mass Index (BMI) values (p = 0.002), fat percentage (p = 0.007), muscle mass (p = 0.01) bone mass (p = 0.01), as well as in the score of the subjective global evaluation (p = 0.03). Also differences were found between the basal and final serum levels of Triglycerides (TG) (p = 0.01), VLDL (p = 0.003). A significant decrease in the levels of serum ferritin (2003.69 ± 518.73 vs 1795.65 ± 519.00 ng/mL; p = 0.04). Nor were significant differences observed between the baseline and the final Thiobarbituric Acid Reactive Substances (TBARS) values (70.45 ± 69.21 vs 50.19 ± 32.62, p = 0.24). The same results was obtained for carbonyl values (2.67 ± 0.75 vs 2.50 ± 0.85; p = 0.50). DISCUSSION: The present study is the first assay on patients with chronic kidney disease and iron overload that demonstrates the beneficial effects of combined supplementation with Curcumin and Resveratrol on muscle and bone mass. There was a significant decrease in circulating levels of ferritin, to finding that remarkably novel.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Curcumina/administração & dosagem , Suplementos Nutricionais , Sobrecarga de Ferro/tratamento farmacológico , Diálise Renal , Insuficiência Renal Crônica/tratamento farmacológico , Resveratrol/administração & dosagem , Adulto , Anti-Inflamatórios não Esteroides/farmacologia , Densidade Óssea/efeitos dos fármacos , Curcumina/farmacologia , Método Duplo-Cego , Feminino , Ferritinas , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/efeitos dos fármacos , Resveratrol/farmacologia , Triglicerídeos/sangue
20.
Antioxidants (Basel) ; 8(3)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897746

RESUMO

It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA