Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 210(4): 497-507, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941161

RESUMO

Rationale: Sarcoidosis is a granulomatous disorder of unclear cause notable for abnormal elevation of blood and tissue ACE1 (angiotensin converting enzyme 1) levels and activity. ACE1 regulates the renin-angiotensin-aldosterone system (RAAS), the terminal product of which is aldosterone, which selectively engages mineralocorticoid receptors to promote inflammation. Objectives: We sought to determine whether the RAAS promotes sarcoidosis granuloma formation and related inflammatory responses. Methods: Using an established ex vivo model, we first determined whether aldosterone was produced by sarcoidosis granulomas and verified the presence of CYP11B2, the enzyme required for its production. We then evaluated the effects of selective inhibitors of ACE1 (captopril), angiotensin type 1 receptor (losartan), and mineralocorticoid receptors (spironolactone, eplerenone) on granuloma formation, reflected by computer image analysis-generated granuloma area, and selected cytokines incriminated in sarcoidosis pathogenesis. Measurements and Main Results: Aldosterone was spontaneously produced by sarcoidosis peripheral blood mononuclear cells, and both intra- and extracellular levels steadily increased during granuloma formation. In parallel, peripheral blood mononuclear cells were shown to express more CYP11B2 during granuloma formation. Significant inhibition of sarcoidosis granulomas and related cytokines (TNFα, IL-1ß, IFNγ, IL-10) was observed in response to pretreatments with captopril, losartan, spironolactone, or eplerenone, comparable to that of prednisone. Conclusions: The RAAS is intact in sarcoidosis granulomas and contributes significantly to early granuloma formation and to related inflammatory mediator responses, with important implications for clinical management.


Assuntos
Aldosterona , Citocromo P-450 CYP11B2 , Granuloma , Sistema Renina-Angiotensina , Sarcoidose , Humanos , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Granuloma/tratamento farmacológico , Aldosterona/metabolismo , Sarcoidose/tratamento farmacológico , Sarcoidose/fisiopatologia , Masculino , Feminino , Losartan/farmacologia , Losartan/uso terapêutico , Eplerenona/farmacologia , Eplerenona/uso terapêutico , Inflamação , Espironolactona/uso terapêutico , Espironolactona/farmacologia , Pessoa de Meia-Idade , Captopril/farmacologia , Captopril/uso terapêutico , Citocinas/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Peptidil Dipeptidase A/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/farmacologia
2.
J Cardiovasc Magn Reson ; : 101082, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142567

RESUMO

BACKGROUND: Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software (pulse sequence) and hardware (scanner vendor) is an ongoing challenge. METHODS: Datasets from 3 medical centers acquired at 3T (n = 150 subjects; 21,150 first-pass images) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, dubbed Data Adaptive Uncertainty-Guided Space-time (DAUGS) analysis, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. For comparison, we also trained a DNN using the established approach with the same settings (hyperparameters, data augmentation, etc.). RESULTS: The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (Dice score for the testing subset of inD: 0.896 ± 0.050 vs. 0.890 ± 0.049; p = n.s.) whereas it significantly outperformed on the external datasets (Dice for exD-1: 0.885 ± 0.040 vs. 0.849 ± 0.065, p < 0.005; Dice for exD-2: 0.811 ± 0.070 vs. 0.728 ± 0.149, p < 0.005). Moreover, the number of image series with "failed" segmentation (defined as having myocardial contours that include bloodpool or are noncontiguous in ≥1 segment) was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). CONCLUSIONS: The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.

3.
JACC Cardiovasc Imaging ; 17(7): 795-810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613553

RESUMO

Microvascular injury immediately following reperfusion therapy in acute myocardial infarction (MI) has emerged as a driving force behind major adverse cardiovascular events in the postinfarction period. Although postmortem investigations and animal models have aided in developing early understanding of microvascular injury following reperfusion, imaging, particularly serial noninvasive imaging, has played a central role in cultivating critical knowledge of progressive damage to the myocardium from the onset of microvascular injury to months and years after in acute MI patients. This review summarizes the pathophysiological features of microvascular injury and downstream consequences, and the contributions noninvasive imaging has imparted in the development of this understanding. It also highlights the interventional trials that aim to mitigate the adverse consequences of microvascular injury based on imaging, identifies potential future directions of investigations to enable improved detection of disease, and demonstrates how imaging stands to play a major role in the development of novel therapies for improved management of acute MI patients.


Assuntos
Circulação Coronária , Hemorragia , Microcirculação , Infarto do Miocárdio , Miocárdio , Valor Preditivo dos Testes , Humanos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/terapia , Infarto do Miocárdio/complicações , Animais , Hemorragia/diagnóstico por imagem , Hemorragia/fisiopatologia , Hemorragia/terapia , Hemorragia/etiologia , Miocárdio/patologia , Resultado do Tratamento , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/etiologia , Prognóstico , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Microvasos/fisiopatologia , Microvasos/diagnóstico por imagem , Fatores de Risco , Reperfusão Miocárdica
4.
Radiol Cardiothorac Imaging ; 6(3): e240135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900024

RESUMO

Environmental exposures including poor air quality and extreme temperatures are exacerbated by climate change and are associated with adverse cardiovascular outcomes. Concomitantly, the delivery of health care generates substantial atmospheric greenhouse gas (GHG) emissions contributing to the climate crisis. Therefore, cardiac imaging teams must be aware not only of the adverse cardiovascular health effects of climate change, but also the downstream environmental ramifications of cardiovascular imaging. The purpose of this review is to highlight the impact of climate change on cardiovascular health, discuss the environmental impact of cardiovascular imaging, and describe opportunities to improve environmental sustainability of cardiac MRI, cardiac CT, echocardiography, cardiac nuclear imaging, and invasive cardiovascular imaging. Overarching strategies to improve environmental sustainability in cardiovascular imaging include prioritizing imaging tests with lower GHG emissions when more than one test is appropriate, reducing low-value imaging, and turning equipment off when not in use. Modality-specific opportunities include focused MRI protocols and low-field-strength applications, iodine contrast media recycling programs in cardiac CT, judicious use of US-enhancing agents in echocardiography, improved radiopharmaceutical procurement and waste management in nuclear cardiology, and use of reusable supplies in interventional suites. Finally, future directions and research are highlighted, including life cycle assessments over the lifespan of cardiac imaging equipment and the impact of artificial intelligence tools. Keywords: Heart, Safety, Sustainability, Cardiovascular Imaging Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Doenças Cardiovasculares , Mudança Climática , Humanos , Doenças Cardiovasculares/diagnóstico por imagem , Gases de Efeito Estufa , Técnicas de Imagem Cardíaca/métodos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
5.
ArXiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39148930

RESUMO

Background: Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software (pulse sequence) and hardware (scanner vendor) is an ongoing challenge. Methods: Datasets from 3 medical centers acquired at 3T (n = 150 subjects; 21,150 first-pass images) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, dubbed Data Adaptive Uncertainty-Guided Space-time (DAUGS) analysis, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. For comparison, we also trained a DNN using the established approach with the same settings (hyperparameters, data augmentation, etc.). Results: The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (Dice score for the testing subset of inD: 0.896 ± 0.050 vs. 0.890 ± 0.049; p = n.s.) whereas it significantly outperformed on the external datasets (Dice for exD-1: 0.885 ± 0.040 vs. 0.849 ± 0.065, p < 0.005; Dice for exD-2: 0.811 ± 0.070 vs. 0.728 ± 0.149, p < 0.005). Moreover, the number of image series with "failed" segmentation (defined as having myocardial contours that include bloodpool or are noncontiguous in ≥1 segment) was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions: The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.

6.
J Am Coll Cardiol ; 84(5): 417-429, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39048273

RESUMO

BACKGROUND: Early invasive revascularization guided by moderate to severe ischemia did not improve outcomes over medical therapy alone, underlying the need to identify high-risk patients for a more effective invasive referral. CMR could determine the myocardial extent and matching locations of ischemia and infarction. OBJECTIVES: This study sought to investigate if CMR peri-infarct ischemia is associated with adverse events incremental to known risk markers. METHODS: Consecutive patients were included in an expanded cohort of the multicenter SPINS (Stress CMR Perfusion Imaging in the United States) study. Peri-infarct ischemia was defined by the presence of any ischemic segment neighboring an infarcted segment by late gadolinium enhancement imaging. Primary outcome events included acute myocardial infarction and cardiovascular death, whereas secondary events included any primary events, hospitalization for unstable angina, heart failure hospitalization, and late coronary artery bypass surgery. RESULTS: Among 3,915 patients (age: 61.0 ± 12.9 years; 54.7% male), ischemia, infarct, and peri-infarct ischemia were present in 752 (19.2%), 1,123 (28.8%), and 382 (9.8%) patients, respectively. At 5.3 years (Q1-Q3: 3.9-7.2 years) of median follow-up, primary and secondary events occurred in 406 (10.4%) and 745 (19.0%) patients, respectively. Peri-infarct ischemia was the strongest multivariable predictor for primary and secondary events (HRadjusted: 1.72 [95% CI: 1.23-2.41] and 1.71 [95% CI: 1.32-2.20], respectively; both P < 0.001), adjusted for clinical risk factors, left ventricular function, ischemia extent, and infarct size. The presence of peri-infarct ischemia portended to a >6-fold increased annualized primary event rate compared to those with no infarct and ischemia (6.5% vs 0.9%). CONCLUSIONS: Peri-infarct ischemia is a novel and robust prognostic marker of adverse cardiovascular events.


Assuntos
Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio , Isquemia Miocárdica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Idoso , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/diagnóstico por imagem , Teste de Esforço/métodos , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA