Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 67(6): 1839-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826216

RESUMO

The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice.


Assuntos
Clorofila/metabolismo , Citocininas/metabolismo , Escuridão , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fotossíntese , Clorofila A , Cromatografia Líquida de Alta Pressão , Citocininas/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/efeitos dos fármacos , Oryza/genética , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
PLoS Genet ; 7(4): e1002020, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533176

RESUMO

Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.


Assuntos
Interações Hospedeiro-Patógeno/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Clonagem Molecular , Perfilação da Expressão Gênica , Imunidade Inata , Oryza/imunologia , Oryza/microbiologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas/patogenicidade
3.
Funct Integr Genomics ; 12(2): 277-89, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22367483

RESUMO

Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.


Assuntos
Genes de Plantas , Oryza/genética , Southern Blotting , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Grão Comestível/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melhoramento Genético , Inflorescência/genética , Inflorescência/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/anatomia & histologia , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
4.
Front Plant Sci ; 13: 810373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712577

RESUMO

The genomes of an elite rice restorer line KMR3 (salinity-sensitive) and its salinity-tolerant introgression line IL50-13, a popular variety of coastal West Bengal, India, were sequenced. High-quality paired-end reads were obtained for KMR3 (147.6 million) and IL50-13 (131.4 million) with a sequencing coverage of 30X-39X. Scaffolds generated from the pre-assembled contigs of each sequenced genome were mapped separately onto the reference genome of Oryza sativa ssp. japonica cultivar Nipponbare to identify genomic variants in terms of SNPs and InDels. The SNPs and InDels identified for KMR3 and IL50-13 were then compared with each other to identify polymorphic SNPs and InDels unique and common to both the genomes. Functional enrichment analysis of the protein-coding genes with unique InDels identified GO terms involved in protein modification, ubiquitination, deubiquitination, peroxidase activity, and antioxidant activity in IL50-13. Linoleic acid metabolism, circadian rhythm, and alpha-linolenic acid metabolism pathways were enriched in IL50-13. These GO terms and pathways are involved in reducing oxidative damage, thus suggesting their role in stress responses. Sequence analysis of QTL markers or genes known to be associated with grain yield and salinity tolerance showed polymorphism in 20 genes, out of which nine were not previously reported. These candidate genes encoded Nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) domain-containing protein, cyclase, receptor-like kinase, topoisomerase II-associated protein PAT1 domain-containing protein, ion channel regulatory protein, UNC-93 domain-containing protein, subunit A of the heteromeric ATP-citrate lyase, and three conserved hypothetical genes. Polymorphism was observed in the coding, intron, and untranslated regions of the genes on chromosomes 1, 2, 4, 7, 11, and 12. Genes showing polymorphism between the two genomes were considered as sequence-based new candidates derived from Oryza rufipogon for conferring high yield and salinity tolerance in IL50-13 for further functional studies.

5.
Sci Rep ; 10(1): 4873, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184449

RESUMO

In this study, we compared genome-wide transcriptome profile of two rice hybrids, one with (test hybrid IR79156A/IL50-13) and the other without (control hybrid IR79156A/KMR3) O. rufipogon introgressions to identify candidate genes related to grain yield in the test hybrid. IL50-13 (Chinsurah Nona2 IET21943) the male parent (restorer) used in the test hybrid, is an elite BC4F8 introgression line of KMR3 with O. rufipogon introgressions. We identified 2798 differentially expressed genes (DEGs) in flag leaf and 3706 DEGs in panicle. Overall, 78 DEGs were within the major yield QTL qyld2.1 and 25 within minor QTL qyld8.2. The DEGs were significantly (p < 0.05) enriched in starch synthesis, phenyl propanoid pathway, ubiquitin degradation and phytohormone related pathways in test hybrid compared to control hybrid. Sequence analysis of 136 DEGs from KMR3 and IL50-13 revealed 19 DEGs with SNP/InDel variations. Of the 19 DEGs only 6 showed both SNP and InDel variations in exon regions. Of these, two DEGs within qyld2.1, Phenylalanine ammonia- lyase (PAL) (Os02t0626400-01, OsPAL2) showed 184 SNPs and 11 InDel variations and Similar to phenylalanine ammonia- lyase (Os02t0627100-01, OsPAL4) showed 205 SNPs and 13 InDel variations. Both PAL genes within qyld2.1 and derived from O. rufipogon are high priority candidate genes for increasing grain yield in rice.


Assuntos
Perfilação da Expressão Gênica/métodos , Oryza/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Introgressão Genética , Variação Genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sequenciamento do Exoma
6.
Plant Sci ; 276: 208-219, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348320

RESUMO

Biofortification of rice (Oryza sativa L.) would alleviate iron and zinc deficiencies in the target populations. We identified two alleles 261 and 284 of a Gramineae-specific heavy metal transporter gene OsHMA7 by analyzing expression patterns and sequences of genes within QTLs for high Fe & Zn, in Madhukar x Swarna recombinant inbred lines (RILs) with high (HL) or low (LL) grain Fe & Zn. Overexpression of 261 allele increased grain Fe and Zn but most of the transgenic plants either did not survive or did not yield enough seeds and could not be further characterized. Knocking down expression of OsHMA7 by RNAi silencing of endogenous gene resulted in plants with altered domestication traits such as plant height, tiller number, panicle size and architecture, grain color, shape, size, grain shattering, heading date and increased sensitivity to Fe and Zn deficiency. However, overexpression of 284 allele resulted in transgenic lines with either high grain Fe & Zn content (HL-ox) and tolerance to Fe and Zn deficiency or low grain Fe & Zn content (LL-ox) and phenotype similar to RNAi-lines. OsHMA7 transcript levels were five-fold higher in the HL-ox plants whereas LL-ox and RNAi plants showed 2-3 fold reduced levels compared to Kitaake control. Spraying LL-ox and RNAi lines with Fe & Zn at grain filling stage resulted in increased grain yield, significant increase in Fe & Zn content and brown pericarp. Altered expression of OsHMA7 influenced transcript levels of iron-responsive genes indicating cellular Fe-Zn homeostasis and also several domestication-related genes in rice. Our study shows that a novel heavy metal transporter gene influences yield and grain Fe & Zn content and has potential to improve rice production and biofortification.


Assuntos
Regulação para Baixo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Oryza/genética , Locos de Características Quantitativas/genética , Zinco/metabolismo , Alelos , Biofortificação , Domesticação , Grão Comestível , Regulação da Expressão Gênica de Plantas , Homeostase , Ferro/análise , Deficiências de Ferro , Proteínas de Membrana Transportadoras/metabolismo , Metais Pesados/análise , Metais Pesados/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Zinco/análise , Zinco/deficiência
7.
PLoS One ; 10(6): e0127831, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26035591

RESUMO

AP2/ERF-type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA