Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Cogn Neurosci ; : 1-16, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39023371

RESUMO

Scene perception allows humans to extract information from their environment and plan navigation efficiently. The automatic extraction of potential paths in a scene, also referred to as navigational affordances, is supported by scene-selective regions (SSRs) that enable efficient human navigation. Recent evidence suggests that the activity of these SSRs can be influenced by information from adjacent spatial memory areas. However, it remains unexplored how these contextual information could influence the extraction of bottom-up information, such as navigational affordances, from a scene and the underlying neural dynamics. Therefore, we analyzed ERPs in 26 young adults performing scene and spatial memory tasks in artificially generated rooms with varying numbers and locations of available doorways. We found that increasing the number of navigational affordances only impaired performance in the spatial memory task. ERP results showed a similar pattern of activity for both tasks, but with increased P2 amplitude in the spatial memory task compared with the scene memory. Finally, we reported no modulation of the P2 component by the number of affordances in either task. This modulation of early markers of visual processing suggests that the dynamics of SSR activity are influenced by a priori knowledge, with increased amplitude when participants have more contextual information about the perceived scene. Overall, our results suggest that prior spatial knowledge about the scene, such as the location of a goal, modulates early cortical activity associated with SSRs, and that this information may interact with bottom-up processing of scene content, such as navigational affordances.

2.
Cerebellum ; 23(2): 802-832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37428408

RESUMO

Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Idoso , Estudos Transversais , Consenso , Qualidade de Vida , Cerebelo/patologia , Envelhecimento , Imageamento por Ressonância Magnética/métodos
3.
Cerebellum ; 22(2): 235-239, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35257295

RESUMO

Spatial navigation is an intricate ability, requiring multisensory and motor integration, that is particularly impacted in aging. The age-related decline in navigational capabilities is known to be associated with changes in brain regions such as the frontal, temporal, and cerebellar cortices. Age-related cerebellar differences in spatial navigation have generally been ascribed to motor impairments, omitting the central role of this structure in several cognitive processes. In the present voxel-based morphometric study, we investigated gray matter volume loss in older adults across cognitive and motor subregions of the cerebellum. Specifically, we hypothesized that age-related gray matter differences would occur mainly in cerebellar regions involved in cognitive processing. Our results showed a significant age-related atrophy in the left neocerebellum of healthy older adults that includes Crus I and lobule VI. The latter are important nodes in the network that subtends cognitive abilities such as object recognition and spatial cognition. This exploratory work sets the ground for future research to investigate the extent of the neocerebellum's contribution to spatial navigation deficits in aging.


Assuntos
Envelhecimento Saudável , Navegação Espacial , Imageamento por Ressonância Magnética , Cerebelo , Encéfalo , Substância Cinzenta
4.
Hum Brain Mapp ; 43(17): 5281-5295, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776524

RESUMO

Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal-dependent system for the representation of geometry and a striatal-dependent system for the representation of landmarks. However, this dual-system hypothesis is based on paradigms that presented spatial cues conveying either conflicting or ambiguous spatial information and that used the term landmark to refer to both discrete three-dimensional objects and wall features. Here, we test the hypothesis of complex activation patterns in the hippocampus and the striatum during visual coding. We also postulate that object-based and feature-based navigation are not equivalent instances of landmark-based navigation. We examined how the neural networks associated with geometry-, object-, and feature-based spatial navigation compared with a control condition in a two-choice behavioral paradigm using fMRI. We showed that the hippocampus was involved in all three types of cue-based navigation, whereas the striatum was more strongly recruited in the presence of geometric cues than object or feature cues. We also found that unique, specific neural signatures were associated with each spatial cue. Object-based navigation elicited a widespread pattern of activity in temporal and occipital regions relative to feature-based navigation. These findings extend the current view of a dual, juxtaposed hippocampal-striatal system for visual spatial coding in humans. They also provide novel insights into the neural networks mediating object versus feature spatial coding, suggesting a need to distinguish these two types of landmarks in the context of human navigation.


Assuntos
Sinais (Psicologia) , Navegação Espacial , Humanos , Navegação Espacial/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Corpo Estriado/diagnóstico por imagem , Percepção Espacial/fisiologia
5.
Eur J Neurosci ; 54(12): 8256-8282, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738880

RESUMO

Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion-constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark-based navigation in actively behaving young adults, solving a Y-maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state-of-the-art brain imaging literature of landmark-based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo-spatial processing and coding, we observed an alpha-power desynchronization while participants gathered visual information. We also hypothesized behavior-dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time-frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high-density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark-based navigation.


Assuntos
Ondas Encefálicas , Navegação Espacial , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Adulto Jovem
6.
Vis Neurosci ; 35: E006, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905126

RESUMO

In age-related macular degeneration (AMD), the processing of fine details in a visual scene, based on a high spatial frequency processing, is impaired, while the processing of global shapes, based on a low spatial frequency processing, is relatively well preserved. The present fMRI study aimed to investigate the residual abilities and functional brain changes of spatial frequency processing in visual scenes in AMD patients. AMD patients and normally sighted elderly participants performed a categorization task using large black and white photographs of scenes (indoors vs. outdoors) filtered in low and high spatial frequencies, and nonfiltered. The study also explored the effect of luminance contrast on the processing of high spatial frequencies. The contrast across scenes was either unmodified or equalized using a root-mean-square contrast normalization in order to increase contrast in high-pass filtered scenes. Performance was lower for high-pass filtered scenes than for low-pass and nonfiltered scenes, for both AMD patients and controls. The deficit for processing high spatial frequencies was more pronounced in AMD patients than in controls and was associated with lower activity for patients than controls not only in the occipital areas dedicated to central and peripheral visual fields but also in a distant cerebral region specialized for scene perception, the parahippocampal place area. Increasing the contrast improved the processing of high spatial frequency content and spurred activation of the occipital cortex for AMD patients. These findings may lead to new perspectives for rehabilitation procedures for AMD patients.


Assuntos
Lobo Occipital/fisiologia , Processamento Espacial/fisiologia , Percepção Visual/fisiologia , Degeneração Macular Exsudativa/metabolismo , Idoso , Mapeamento Encefálico , Exsudatos e Transudatos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia de Coerência Óptica , Campos Visuais , Degeneração Macular Exsudativa/diagnóstico por imagem
7.
Neuroimage ; 112: 86-95, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25754068

RESUMO

Visual analysis begins with the parallel extraction of different attributes at different spatial frequencies. Low spatial frequencies (LSF) convey coarse information and are characterized by high luminance contrast, while high spatial frequencies (HSF) convey fine details and are characterized by low luminance contrast. In the present fMRI study, we examined how scene-selective regions-the parahippocampal place area (PPA), the retrosplenial cortex (RSC) and the occipital place area (OPA)-responded to spatial frequencies when contrast was either equalized or not equalized across spatial frequencies. Participants performed a categorization task on LSF, HSF and non-filtered scenes belonging to two different categories (indoors and outdoors). We either left contrast across scenes untouched, or equalized it using a root-mean-square contrast normalization. We found that when contrast remained unmodified, LSF and NF scenes elicited greater activation than HSF scenes in the PPA. However, when contrast was equalized across spatial frequencies, the PPA was selective to HFS. This suggests that PPA activity relies on an interaction between spatial frequency and contrast in scenes. In the RSC, LSF and NF elicited greater response than HSF scenes when contrast was not modified, while no effect of spatial frequencies appeared when contrast was equalized across filtered scenes, suggesting that the RSC is sensitive to high-contrast information. Finally, we observed selective activation of the OPA in response to HSF, irrespective of contrast manipulation. These results provide new insights into how scene-selective areas operate during scene processing.


Assuntos
Córtex Cerebral/fisiologia , Giro Para-Hipocampal/fisiologia , Percepção Espacial/fisiologia , Mapeamento Encefálico , Meio Ambiente , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
8.
J Cogn Neurosci ; 26(10): 2287-97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24738768

RESUMO

Neurophysiological, behavioral, and computational data indicate that visual analysis may start with the parallel extraction of different elementary attributes at different spatial frequencies and follows a predominantly coarse-to-fine (CtF) processing sequence (low spatial frequencies [LSF] are extracted first, followed by high spatial frequencies [HSF]). Evidence for CtF processing within scene-selective cortical regions is, however, still lacking. In the present fMRI study, we tested whether such processing occurs in three scene-selective cortical regions: the parahippocampal place area (PPA), the retrosplenial cortex, and the occipital place area. Fourteen participants were subjected to functional scans during which they performed a categorization task of indoor versus outdoor scenes using dynamic scene stimuli. Dynamic scenes were composed of six filtered images of the same scene, from LSF to HSF or from HSF to LSF, allowing us to mimic a CtF or the reverse fine-to-coarse (FtC) sequence. Results showed that only the PPA was more activated for CtF than FtC sequences. Equivalent activations were observed for both sequences in the retrosplenial cortex and occipital place area. This study suggests for the first time that CtF sequence processing constitutes the predominant strategy for scene categorization in the PPA.


Assuntos
Mapeamento Encefálico , Comportamento de Escolha/fisiologia , Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/irrigação sanguínea , Adulto Jovem
9.
Atten Percept Psychophys ; 85(5): 1661-1680, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264292

RESUMO

The SPoARC (Spatial Positional Association of Response Codes) effect refers to spatialization of information in working memory. Among the potential factors that could influence how order is mapped onto a mental space during the recognition process, we selected the following two factors: i) the type of stimuli, in particular their verbal vs. visual aspects and ii) the number of probes. In this study, 137 participants memorized sequences of either words or pictures and subsequently performed a recognition test for which they responded using lateralized keys. For half of the participants, only one probe was presented after each sequence, whereas the other half was administered several probes. A significantly greater number of participants presented a SPoARC using a single probe. We discuss that spatialization is best detected when the sequence is scanned only once. Results also showed no difference between the two types of stimuli (i.e., verbal vs. visual). This finding raises the question of the respective roles of verbalization and visualization in the SPoARC.


Assuntos
Memória de Curto Prazo , Percepção Espacial , Humanos , Percepção Espacial/fisiologia , Memória de Curto Prazo/fisiologia , Projetos de Pesquisa , Reconhecimento Psicológico
10.
NPJ Aging ; 9(1): 25, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903801

RESUMO

Apathy is a pervasive clinical syndrome in neurocognitive disorders, characterized by a quantitative reduction in goal-directed behaviors. The brain structures involved in the physiopathology of apathy have also been connected to the brain structures involved in probabilistic reward learning in the exploration-exploitation dilemma. This dilemma in question involves the challenge of selecting between a familiar option with a more predictable outcome, and another option whose outcome is uncertain and may yield potentially greater rewards compared to the known option. The aim of this study was to combine experimental procedures and computational modeling to examine whether, in older adults with mild neurocognitive disorders, apathy affects performance in the exploration-exploitation dilemma. Through using a four-armed bandit reinforcement-learning task, we showed that apathetic older adults explored more and performed worse than non-apathetic subjects. Moreover, the mental flexibility assessed by the Trail-making test-B was negatively associated with the percentage of exploration. These results suggest that apathy is characterized by an increased explorative behavior and inefficient decision-making, possibly due to weak mental flexibility to switch toward the exploitation of the more rewarding options. Apathetic participants also took longer to make a choice and failed more often to respond in the allotted time, which could reflect the difficulties in action initiation and selection. In conclusion, the present results suggest that apathy in participants with neurocognitive disorders is associated with specific disturbances in the exploration-exploitation trade-off and sheds light on the disturbances in reward processing in patients with apathy.

11.
Elife ; 122023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912888

RESUMO

Human spatial cognition has been mainly characterized in terms of egocentric (body-centered) and allocentric (world-centered) wayfinding bhavior. It was hypothesized that allocentric spatial coding, as a special high-level cognitive ability, develops later and deteriorates earlier than the egocentric one throughout lifetime. We challenged this hypothesis by testing the use of landmarks versus geometric cues in a cohort of 96 deeply phenotyped participants, who physically navigated an equiangular Y maze, surrounded by landmarks or an anisotropic one. The results show that an apparent allocentric deficit in children and aged navigators is caused specifically by difficulties in using landmarks for navigation while introducing a geometric polarization of space made these participants as efficient allocentric navigators as young adults. This finding suggests that allocentric behavior relies on two dissociable sensory processing systems that are differentially affected by human aging. Whereas landmark processing follows an inverted-U dependence on age, spatial geometry processing is conserved, highlighting its potential in improving navigation performance across the lifespan.


Assuntos
Longevidade , Navegação Espacial , Criança , Adulto Jovem , Humanos , Idoso , Envelhecimento , Orientação Espacial , Sinais (Psicologia) , Percepção Espacial
12.
Eur J Neurosci ; 36(11): 3568-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22925196

RESUMO

The goal of executive control is to adjust our behaviour to the environment. It involves not only the continuous planning and adaptation of actions but also the inhibition of inappropriate movements. Recently, a proactive form of inhibitory control has been shown, demonstrating that actions can be withheld, in an uncertain environment, thanks to the proactive locking of the mechanism by which motor commands are triggered (e.g. while waiting at traffic lights in a dense pedestrian zone, one will refrain in anticipation of a brisk acceleration when the green light comes on). However, little is known about this executive function and it remains unclear whether the overall amount of inhibitory control can be modulated as a function of the context. Here, we show that the level of this control varies parametrically as a function of the exogenous and endogenous factors setting the task context. We also show that the level of implemented proactive inhibitory control is dynamically readjusted to match the implicit temporal structure of the environment. These observations are discussed in relation to possible underlying functional substrates and related neurological and psychiatric pathologies.


Assuntos
Meio Ambiente , Função Executiva/fisiologia , Inibição Proativa , Adulto , Sinais (Psicologia) , Humanos , Masculino , Tempo de Reação
13.
Aging Brain ; 2: 100034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908887

RESUMO

Aging leads to a complex pattern of structural and functional changes, gradually affecting sensorimotor, perceptual, and cognitive processes. These multiscale changes can hinder older adults' interaction with their environment, progressively reducing their autonomy in performing tasks relevant to everyday life. Autonomy loss can further be aggravated by the onset and progression of neurodegenerative disorders (e.g., age-related macular degeneration at the sensory input level; and Alzheimer's disease at the cognitive level). In this context, spatial cognition offers a representative case of high-level brain function that involves multimodal sensory processing, postural control, locomotion, spatial orientation, and wayfinding capabilities. Hence, studying spatial behavior and its neural bases can help identify early markers of pathogenic age-related processes. Until now, the neural correlates of spatial cognition have mostly been studied in static conditions thereby disregarding perceptual (other than visual) and motor aspects of natural navigation. In this review, we first demonstrate how visuo-motor integration and the allocation of cognitive resources during locomotion lie at the heart of real-world spatial navigation. Second, we present how technological advances such as immersive virtual reality and mobile neuroimaging solutions can enable researchers to explore the interplay between perception and action. Finally, we argue that the future of brain aging research in spatial navigation demands a widespread shift toward the use of naturalistic, ecologically valid experimental paradigms to address the challenges of mobility and autonomy decline across the lifespan.

14.
Atten Percept Psychophys ; 83(3): 1094-1105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33506351

RESUMO

Ensemble statistics of a visual scene can be estimated to provide a gist of the scene without detailed analysis of all individual items. The simplest and most widely studied ensemble statistic is mean estimation, which requires averaging an ensemble of elements. Averaging is useful to estimate the mean of an ensemble and discard the variance. The source of variance can be external (i.e., variance across the physical elements) or internal (i.e., imprecisions in the estimates of the elements by the visual system). The equivalent noise paradigm is often used to measure the impact of the internal variance (i.e., the equivalent input noise). This paradigm relies on the assumption that the averaging process is equally effective independently of the main source of variance, internal or external, so any difference between the processing when the main source of variance is internal or external must be assumed not to affect the averaging efficiency. The current fMRI study compared the neural activity when the main variance is caused by the stimulus (i.e., high variance) and when it is caused by imprecisions in the estimates of the elements by the visual system (i.e., low variance). The results showed that the right superior frontal and left middle frontal gyri can be significantly more activated when the variance in the orientation of the Gabors was high than when it was low. Consequently, the use of the equivalent noise paradigm requires the assumption that such additional neural activity in high variance does not affect the averaging efficiency.


Assuntos
Ruído , Orientação , Humanos , Imageamento por Ressonância Magnética
15.
Front Hum Neurosci ; 14: 552111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240060

RESUMO

Older adults have difficulties in navigating unfamiliar environments and updating their wayfinding behavior when faced with blocked routes. This decline in navigational capabilities has traditionally been ascribed to memory impairments and dysexecutive function, whereas the impact of visual aging has often been overlooked. The ability to perceive visuospatial information such as salient landmarks is essential to navigating efficiently. To date, the functional and neurobiological factors underpinning landmark processing in aging remain insufficiently characterized. To address this issue, functional magnetic resonance imaging (fMRI) was used to investigate the brain activity associated with landmark-based navigation in young and healthy older participants. The performances of 25 young adults (µ = 25.4 years, σ = 2.7; seven females) and 17 older adults (µ = 73.0 years, σ = 3.9; 10 females) were assessed in a virtual-navigation task in which they had to orient using salient landmarks. The underlying whole-brain patterns of activity as well as the functional roles of specific cerebral regions involved in landmark processing, namely the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC), were analyzed. Older adults' navigational abilities were overall diminished compared to young adults. Also, the two age groups relied on distinct navigational strategies to solve the task. Better performances during landmark-based navigation were associated with increased neural activity in an extended neural network comprising several cortical and cerebellar regions. Direct comparisons between age groups revealed that young participants had greater anterior temporal activity. Also, only young adults showed significant activity in occipital areas corresponding to the cortical projection of the central visual field during landmark-based navigation. The region-of-interest analysis revealed an increased OPA activation in older adult participants during the landmark condition. There were no significant between-group differences in PPA and RSC activations. These preliminary results hint at the possibility that aging diminishes fine-grained information processing in occipital and temporal regions, thus hindering the capacity to use landmarks adequately for navigation. Keeping sight of its exploratory nature, this work helps towards a better comprehension of the neural dynamics subtending landmark-based navigation and it provides new insights on the impact of age-related visuospatial processing differences on navigation capabilities.

16.
Front Aging Neurosci ; 12: 588653, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281600

RESUMO

Cognitive demands for postural control increase with aging and cognitive-motor interference (CMI) exists for a number of walking situations, especially with visuo-spatial cognitive tasks. Such interference also influences spatial learning abilities among older adults; however, this is rarely considered in research on aging in spatial navigation. We posited that visually and physically exploring an unknown environment may be subject to CMI for older adults. We investigated potential indicators of postural control interfering with spatial learning. Given known associations between age-related alterations in gait and brain structure, we also examined potential neuroanatomical correlates of this interference. Fourteen young and 14 older adults had to find an invisible goal in an unfamiliar, real, ecological environment. We measured walking speed, trajectory efficiency (direct route over taken route) and goal fixations (proportion of visual fixations toward the goal area). We calculated the change in walking speed between the first and last trials and adaptation indices for all three variables to quantify their modulation across learning trials. All participants were screened with a battery of visuo-cognitive tests. Eighteen of our participants (10 young, 8 older) also underwent a magnetic resonance imaging (MRI) examination. Older adults reduced their walking speed considerably on the first, compared to the last trial. The adaptation index of walking speed correlated positively with those of trajectory efficiency and goal fixations, indicating a reduction in resource sharing between walking and encoding the environment. The change in walking speed correlated negatively with gray matter volume in superior parietal and occipital regions and the precuneus. We interpret older adults' change in walking speed as indicative of CMI, similar to dual task costs. This is supported by the correlations between the adaptation indices and between the change in walking speed and gray matter volume in brain regions that are important for navigation, given that they are involved in visual attention, sensory integration and encoding of space. These findings under ecological conditions in a natural spatial learning task question what constitutes dual tasking in older adults and they can lead future research to reconsider the actual cognitive burden of postural control in aging navigation research.

17.
Front Neural Circuits ; 13: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736716

RESUMO

Spatial navigation involves multiple cognitive processes including multisensory integration, visuospatial coding, memory, and decision-making. These functions are mediated by the interplay of cerebral structures that can be broadly separated into a posterior network (subserving visual and spatial processing) and an anterior network (dedicated to memory and navigation planning). Within these networks, areas such as the hippocampus (HC) are known to be affected by aging and to be associated with cognitive decline and navigation impairments. However, age-related changes in brain connectivity within the spatial navigation network remain to be investigated. For this purpose, we performed a neuroimaging study combining functional and structural connectivity analyses between cerebral regions involved in spatial navigation. Nineteen young (µ = 27 years, σ = 4.3; 10 F) and 22 older (µ = 73 years, σ = 4.1; 10 F) participants were examined in this study. Our analyses focused on the parahippocampal place area (PPA), the retrosplenial cortex (RSC), the occipital place area (OPA), and the projections into the visual cortex of central and peripheral visual fields, delineated from independent functional localizers. In addition, we segmented the HC and the medial prefrontal cortex (mPFC) from anatomical images. Our results show an age-related decrease in functional connectivity between low-visual areas and the HC, associated with an increase in functional connectivity between OPA and PPA in older participants compared to young subjects. Concerning the structural connectivity, we found age-related differences in white matter integrity within the navigation brain network, with the exception of the OPA. The OPA is known to be involved in egocentric navigation, as opposed to allocentric strategies which are more related to the hippocampal region. The increase in functional connectivity between the OPA and PPA may thus reflect a compensatory mechanism for the age-related alterations around the HC, favoring the use of the preserved structural network mediating egocentric navigation. Overall, these findings on age-related differences of functional and structural connectivity may help to elucidate the cerebral bases of spatial navigation deficits in healthy and pathological aging.


Assuntos
Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Navegação Espacial/fisiologia , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Neuroimagem , Adulto Jovem
18.
Cerebellum Ataxias ; 5: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087782

RESUMO

[This corrects the article DOI: 10.1186/s40673-018-0088-8.].

19.
Front Aging Neurosci ; 10: 235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123123

RESUMO

Normal aging is characterized by decline in cognitive functioning in conjunction with extensive gray matter (GM) atrophy. A first aim of this study was to determine GM volume differences related to aging by comparing two groups of participants, middle-aged group (MAG, mean age 41 years, N = 16) and older adults (OG, mean age 71 years, N = 14) who underwent an magnetic resonance images (MRI) voxel-based morphometry (VBM) evaluation. The VBM analyses included two optimized pipelines, for the cortex and for the cerebellum. Participants were also evaluated on a wide range of cognitive tests assessing both domain-general and language-specific processes, in order to examine how GM volume differences between OG and MAG relate to cognitive performance. Our results show smaller bilateral GM volume in the OG relative to the MAG, in several cerebral and right cerebellar regions involved in language and executive functions. Importantly, our results also revealed smaller GM volume in the right cerebellum in OG relative to MAG, supporting the idea of a complex cognitive role for this structure. This study provides a broad picture of cerebral, but also cerebellar and cognitive changes associated with normal aging.

20.
Vision Res ; 130: 36-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27876510

RESUMO

Age-related macular degeneration (AMD) is characterized by a central vision loss. Here, we investigated the ability of AMD patients to process the spatial frequency content of scenes in their residual vision, depending of the luminance contrast level. AMD patients and normally-sighted elderly participants (controls) performed a categorization task involving large scenes (outdoors vs. indoors) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and non-filtered scenes (NF). Luminance contrast of scenes was equalized between stimuli using a root-mean square (RMS) contrast normalization. In Experiment 1, we applied an RMS contrast of 0.1 (for luminance values between 0 and 1), a value situated between the mean contrast of LSF and HSF scenes in natural conditions. In Experiment 2, we applied an RMS contrast of 0.3, corresponding to the mean contrast of HSF scenes in natural conditions. In Experiment 3, we manipulated four levels of linearly-increasing RMS contrasts (0.05, 0.10, 0.15, and 0.20) for HSF scenes only. Compared to controls, AMD patients gave more non-responses in the categorization of HSF than NF or LSF scenes, irrespective of the contrast level of scenes. Performances improved as contrast increased in HSF scenes. Controls were not differentially affected by the spatial frequency content of scenes. Overall, results suggest that LSF processing is well preserved in AMD patients and allows efficient scene categorization in their parafoveal residual vision. The HSF processing deficit could be partially restored by enhancing luminance contrast.


Assuntos
Sensibilidades de Contraste/fisiologia , Degeneração Macular/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA