Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Phys Chem Chem Phys ; 26(1): 36-46, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086628

RESUMO

In this brief review, we introduce a new spin ladder system called skewed spin ladders and discuss the exotic quantum phases of this system. The spin ladders studied are the 5/7, 3/4 and 3/5 systems corresponding to alternately fused 5 and 7 membered rings; 3 and 4 membered rings; and 3 and 5 membered rings. These ladders show completely different behaviour as the Hamiltonian model parameter is changed. When the Hamiltonian parameter is increased the 5/7 ladder switches from an initial singlet ground state to progressively higher spin ground state and then to a reentrant singlet state before finally settling to the highest spin ground state whose spin equals the number of unit cells in the system. The 3/4 ladder goes from a singlet ground state to a high spin ground state with each unit cell contributing spin 1 to the state, as the model parameter is increased. The 3/5 ladder shows a singlet ground state for small parameters and high spin ground state for intermediate values of the parameter and for still higher parameters, a reentrant singlet ground state. They can also show interesting magnetization plateaus as illustrated by studies on a specific spin ladder.

2.
Phys Chem Chem Phys ; 22(10): 5882-5892, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32110787

RESUMO

Polycyclic aromatic hydrocarbon (PAH) molecules such as quasi-unidimensional oligo-acene and fused azulene display interesting properties for increasing chain length. However, these molecules can be hard to explore computationally due to the number of atoms involved and the fast-increasing numerical cost when using many-body methods. The identification of magnetic PAH molecules is most relevant for technological applications and hence it would be of particular interest to develop rapid preliminary checks to identify likely candidates for both theoretical and experimental pursuits. In this article, we show that an analysis based on a second-order perturbation treatment of electronic correlations for the Hubbard model qualitatively predicts the outcome of more extensive and accurate methods. Based on these results we propose a simple computational protocol for screening molecules and identifying those worthy of a more sophisticated analysis on the magnetic nature of their ground states. Using this protocol we were able to identify two new magnetic molecules made from the combination of only two naphthalene monomers and two azulene ones (both isomers with formula C34H20). For further confirmation of this result, these molecules were also studied by means of density matrix renormalization group and density functional theory.

3.
J Phys Chem A ; 123(25): 5257-5265, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31058503

RESUMO

In recent years, polycyclic aromatic hydrocarbons (PAHs) have been studied for their electronic properties as they are viewed as nanodots of graphene. They have also been of interest as functional molecules for applications such as light-emitting diodes and solar cells. Since the last few years, varying structural and chemical properties corresponding to the size and geometry of these molecules have been studied both theoretically and experimentally. Here, we carry out a systematic study of the electronic states of several PAHs using the Pariser-Parr-Pople model, which incorporates long-range electron correlations. In all of the molecules studied by us, we find that the 2A state is below the 1B state and hence none of them will be fluorescent in the gaseous phase. The singlet-triplet gap is more than half of the singlet-singlet gap in all cases, and hence, none of these PAHs can be candidates for improved solar cell efficiencies in a singlet fission. We discuss in detail the properties of the electronic states, which include bond orders and spin densities (in triplets) of these systems.

4.
Molecules ; 24(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781643

RESUMO

We report studies of the correlated excited states of coronene and substituted coronene within the Pariser⁻Parr⁻Pople (PPP) correlated π -electron model employing the symmetry-adapted density matrix renormalization group technique. These polynuclear aromatic hydrocarbons can be considered as graphene nanoflakes. We review their electronic structures utilizing a new symmetry adaptation scheme that exploits electron-hole symmetry, spin-inversion symmetry, and end-to-end interchange symmetry. The study of the electronic structures sheds light on the electron correlation effects in these finite-size graphene analogues, which diminishes going from one-dimensional to higher-dimensional systems, yet is significant within these finite graphene derivatives.


Assuntos
Grafite/química , Nanopartículas/química , Compostos Policíclicos/química , Elétrons , Luz , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/química , Teoria Quântica , Propriedades de Superfície , Termodinâmica
5.
J Phys Chem A ; 122(43): 8650-8658, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335382

RESUMO

There is a resurgence of interest in the electronic structure of perylene for its applications in molecular devices such as organic photovoltaics and organic light-emitting diodes. In this study, we have obtained the low-lying singlet states of perylene by exactly solving the Parisar-Parr-Pople model Hamiltonian of this system with 20 sites and 20 electrons in the VB basis where dimensionality is ∼5.92 billion. The triplet states of perylene are obtained using a DMRG scheme with symmetry adaptation. The one- and two-photon states are very close in energy ∼3.2 eV while the lowest triplet state is slightly below 1.6 eV indicating that perylene is a good candidate for singlet fission. To explore the tunability of the electronic states, we have studied donor-acceptor substituted perylenes. The two donors and two acceptors are substituted symmetrically at either the four bay sites or four peri sites. In all the bay substitution and one peri substitution at moderate D/A strength, the optical gap is lowered to about 2.8 eV. These molecules can be used as blue emitters. We have also reported bond orders in all the cases, and perylene as well as substituted perylenes can be viewed as two weakly coupled naphthalenes in the singlet states, but in triplets these bonds tend to be comparable to other bonds in strength. The charge densities in substituted perylenes are mostly localized around the substitution sites in the ground state. The positive spin densities in triplets are concentrated around the peri and bay sites with the remaining sites having small spin densities of either sign.

6.
Chemistry ; 23(18): 4380-4396, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28118518

RESUMO

Pentagonal bipyramid FeII complexes have been investigated to evaluate their potential as Ising-spin building units for the preparation of heteropolynuclear complexes that are likely to behave as single-molecule magnets (SMMs). The considered monometallic complexes were prepared from the association of a divalent metal ion with pentadentate ligands that have a 2,6-diacetylpyridine bis(hydrazone) core (H2 LN3O2R ). Their magnetic anisotropy was established by magnetometry to reveal their zero-field splitting (ZFS) parameter D, which ranged between -4 and -13 cm-1 and was found to be modulated by the apical ligands (ROH versus Cl). The alteration of the D value by N-bound axial CN ligands, upon association with cyanometallates, was also assessed for heptacoordinated FeII as well as for related NiII and CoII derivatives. In all cases, N-coordinated cyanide ligands led to large magnetic anisotropy (i.e., -8 to -18 cm-1 for Fe and Ni, +33 cm-1 for Co). Ab initio calculations were performed on three FeII complexes, which enabled one to rationalize the role of the ligand on the nature and magnitude of the magnetic anisotropy. Starting from the pre-existing heptacoordinated complexes, a series of pentanuclear compounds were obtained by reactions with paramagnetic [W(CN)8 ]3- . Magnetic studies revealed the occurrence of ferromagnetic interactions between the spin carriers in all the heterometallic systems. Field-induced slow magnetic relaxation was observed for mononuclear FeII complexes (Ueff /kB up to 53 K (37 cm-1 ), τ0 =5×10-9  s), and SMM behavior was evidenced for a heteronuclear [Fe3 W2 ] derivative (Ueff /kB =35 K and τ0 =4.6 10-10  s), which confirmed that the parent complexes were robust Ising-type building units. High-field EPR spectroscopic investigation of the ZFS parameters for a Ni derivative is also reported.

7.
Chemistry ; 20(41): 13356-65, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25169024

RESUMO

Employing nitronyl nitroxide lanthanide(III) complexes as metallo-ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero-tri-spin (Cu-Ln-radical) one-dimensional compounds. These 2p-3d-4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (Ln(III) = Gd 1Gd, Tb 1Tb, Dy 1Dy; NitPhOAll = 2-(4'-allyloxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (Ln(III) = Gd 2Gd, Tb 2Tb, Dy 2Dy, Ho 2Ho, Yb 2Yb; NitPhOPr = 2-(4'-propoxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (Ln(III) = Gd 3Gd, Tb 3Tb, Dy 3Dy; NitPhOBz=2-(4'-benzyloxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) involve O-bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu-Nit-Ln-Nit-Ln-Nit-Ln-Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal-radical interactions take place in these hetero-tri-spin chain complexes, these and the next-neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single-chain magnet behavior.

8.
J Phys Chem A ; 118(23): 4048-55, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24842608

RESUMO

Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet-triplet gap is only weakly affected. In all the systems we have studied, the excited singlet state, S1, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.

9.
J Chem Phys ; 140(21): 214313, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24908014

RESUMO

Engineering the position of the lowest triplet state (T1) relative to the first excited singlet state (S1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S1 and T1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 × 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors.

10.
J Phys Chem A ; 117(33): 7804-9, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23898943

RESUMO

We study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs) by the density matrix renormalization group (DMRG) technique. We employ the Pariser-Parr-Pople (PPP) Hamiltonian which includes long-range electron-electron interactions. We find that, in the 4n+2 EPs, there are two prominent low-lying one-photon excitations, while in 4n EPs, there is only one such excitation. We also find that 4n+2 EPs have large two-photon absorption cross sections compared to 4n EPs. The charge density rearrangement in the one-photon excited state is mostly at the pyrrole nitrogen site and at the meso carbon sites. In the two-photon states, the charge density rearrangement occurs mostly at the aza-ring sites. In the one-photon state, the C-C bond length in aza rings shows a tendency to become uniform. In the two-photon state, the bond distortions are on C-N bonds of the pyrrole ring and the adjoining C-C bonds which connect the pyrrole ring to the aza or meso carbon sites.


Assuntos
Porfirinas/química , Teoria Quântica , Estrutura Molecular , Fenômenos Ópticos
11.
J Chem Phys ; 136(1): 014112, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239774

RESUMO

The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients.


Assuntos
Metaloporfirinas/química , Porfirinas/química , Teoria Quântica , Estrutura Molecular , Fenômenos Ópticos
12.
J Chem Phys ; 136(19): 194504, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22612100

RESUMO

We have investigated quadratic nonlinearity (ß(HRS)) and linear and circular depolarization ratios (D and D('), respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as π-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D(') values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cation-π complexes studied here, the D value varies from 1.36 to 1.46 and D(') from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, ß, D and D(') were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF(4) (-) anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D(') from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-π BF(4)(-) complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated ß values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise "unimportant" anion in solution on the ß value and depolarization ratios of these cation-π complexes is highlighted and emphasized in this paper.

13.
J Chem Phys ; 134(4): 044534, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280775

RESUMO

In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO∕S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, ß(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.

14.
J Chem Phys ; 134(4): 044533, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280774

RESUMO

We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, ß(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, ß(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical ß(HRS), D and D(') values as a function of the geometry of the complex. The calculated ß(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution.


Assuntos
Benzoquinonas/química , Cloranila/química , Fungicidas Industriais/química , Espalhamento de Radiação , Algoritmos , Compostos de Benzil/química , Modelos Químicos , Soluções/química
15.
J Am Chem Soc ; 132(17): 6047-56, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20380425

RESUMO

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {Fe(II)Nb(IV)} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb(IV), Mo(IV), W(IV)). X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H(2)O)Fe(L(1))}{M(CN)(8)}{Fe(L(1))}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L(1))}(2+) and {M(CN)(8)}(4-) units (L(1) stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L(1))} unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L(1))(H(2)O)(2)]Cl(2) a negative zero field splitting parameter of D approximately = -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L(1))(H(2)O)(2)]Cl(2) are also reported.

16.
J Phys Chem A ; 114(13): 4647-54, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20225811

RESUMO

A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethyl-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by (1)H and (13)C NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess low excitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfer character that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules. Our theoretical values agree well with experimental results.

17.
J Chem Phys ; 132(12): 124109, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20370116

RESUMO

We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R(-2) rather than as R(-6), suggested by the Forster type of dipolar approximation. Our time-evolution study also shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Forster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Forster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Forster theory since the one-photon transition intensity to these states (from the ground state) is zero.

18.
J Chem Phys ; 132(4): 044104, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20113016

RESUMO

The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL) measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.

19.
Phys Rev Lett ; 103(26): 266807, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366334

RESUMO

Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. We investigate the zero-bias and zero-temperature conductance through pi-conjugated annulene molecules weakly coupled to two leads for different source-drain configurations, finding an important reduction for certain transmission channels and for particular geometries as a consequence of destructive quantum interference between states with definite momenta. When translational symmetry is broken by an external perturbation we find an abrupt increase of the conductance through those channels. Previous studies concentrated on the effect at the Fermi energy, where this effect is very small. By analyzing the effect of symmetry breaking on the main transmission channels we find a much larger response thus leading to the possibility of a larger switching of the conductance through single molecules.

20.
Inorg Chem ; 48(13): 5820-8, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19496587

RESUMO

Assembling bimetallic {Ni-Ln}(3+) units and {W(CN)(8)}(3-) is shown to be an efficient route toward heteronuclear {3d-4f-5d} compounds. The reaction of either the binuclear [{L(Me2)Ni(H(2)O)(2)}{Ln(NO(3))(3)}] complexes or their mononuclear components [L(Me2)Ni] and Ln(NO(3))(3) with (HNBu(3))(3){W(CN)(8)} in dmf followed by diffusion of tetrahydrofuran yielded the trinuclear [{L(Me2)NiLn}{W(CN)(8)}] compounds 1 (Ln = Y), 2a,b (Gd), 3a,b (Tb), 4 (Dy), 5 (Ho), and 6 (Er) as crystalline materials. All of the derivatives possess the trinuclear core resulting from the linkage of the {W(CN)(8)} to the Ni center of the {Ni-Ln} unit. Differences are found in the solvent molecules acting as ligands and/or in the lattice depending on the crystallization conditions. For all the compounds ferromagnetic {Ni-W} and {Ni-Ln} (Ln = Gd, Tb, Dy, and Er} interactions are operative resulting in high spin ground states. Parameterization of the magnetic behaviors for the Y and Gd derivatives confirmed the strong cyano-mediated {Ni-W} interaction (J(NiW) = 27.1 and 28.5 cm(-1)) compared to the {Ni-Gd} interaction (J(NiGd) = 2.17 cm(-1)). The characteristic features for slow relaxation of the magnetization are observed for two Tb derivatives, but these are modulated by the crystal phase. Analysis of the frequency dependence of the alternating current susceptibility data yielded U(eff)/k(B) = 15.3 K and tau(0) = 4.5 x 10(-7) s for one derivative whereas no maxima of chi(M)'' appear above 2 K for the second one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA