Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Genet Sel Evol ; 56(1): 12, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347496

RESUMO

BACKGROUND: Intramuscular fat (IMF) content and its fatty acid (FA) composition are typically controlled by several genes, each with a small effect. In the current study, to pinpoint candidate genes and putative regulators involved in FA composition, we performed a multivariate integrative analysis between intramuscular FA and transcriptome profiles of porcine longissimus dorsi (LD) muscle. We also carried out a combination of network, regulatory impact factor (RIF), in silico prediction of putative target genes, and functional analyses to better support the biological relevance of our findings. RESULTS: For this purpose, we used LD RNA-Seq and intramuscular FA composition profiles of 129 Iberian × Duroc backcrossed pigs. We identified 378 correlated variables (13 FA and 365 genes), including six FA (C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, C18:0, and C16:1n-7) that were among the most interconnected variables in the predicted network. The detected FA-correlated genes include genes involved in lipid and/or carbohydrate metabolism or in regulation of IMF deposition (e.g., ADIPOQ, CHUK, CYCS, CYP4B1, DLD, ELOVL6, FBP1, G0S2, GCLC, HMGCR, IDH3A, LEP, LGALS12, LPIN1, PLIN1, PNPLA8, PPP1R1B, SDR16C5, SFRP5, SOD3, SNW1, and TFRC), meat quality (GALNT15, GOT1, MDH1, NEU3, PDHA1, SDHD, and UNC93A), and transport (e.g., EXOC7 and SLC44A2). Functional analysis highlighted 54 over-represented gene ontology terms, including well-known biological processes and pathways that regulate lipid and carbohydrate metabolism. RIF analysis suggested a pivotal role for six transcription factors (CARHSP1, LBX1, MAFA, PAX7, SIX5, and TADA2A) as putative regulators of gene expression and intramuscular FA composition. Based on in silico prediction, we identified putative target genes for these six regulators. Among these, TADA2A and CARHSP1 had extreme RIF scores and present novel regulators in pigs. In addition, the expression of TADA2A correlated (either positively or negatively) with C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, and that of CARHSP1 correlated (positively) with the C16:1n-7 lipokine. We also found that these two transcription factors share target genes that are involved in lipid metabolism (e.g., GOT1, PLIN1, and TFRC). CONCLUSIONS: This integrative analysis of muscle transcriptome and intramuscular FA profile revealed valuable information about key candidate genes and potential regulators for FA and lipid metabolism in pigs, among which some transcription factors are proposed to control gene expression and modulate FA composition differences.


Assuntos
Ácidos Graxos , Músculo Esquelético , Suínos/genética , Animais , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Genes Reguladores , Transcriptoma
2.
Genet Sel Evol ; 55(1): 29, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127575

RESUMO

BACKGROUND: Gut microbial composition plays an important role in numerous traits, including immune response. Integration of host genomic information with microbiome data is a natural step in the prediction of complex traits, although methods to optimize this are still largely unexplored. In this paper, we assess the impact of different modelling strategies on the predictive capacity for six porcine immunocompetence traits when both genotype and microbiota data are available. METHODS: We used phenotypic data on six immunity traits and the relative abundance of gut bacterial communities on 400 Duroc pigs that were genotyped for 70 k SNPs. We compared the predictive accuracy, defined as the correlation between predicted and observed phenotypes, of a wide catalogue of models: reproducing kernel Hilbert space (RKHS), Bayes C, and an ensemble method, using a range of priors and microbial clustering strategies. Combined (holobiont) models that include both genotype and microbiome data were compared with partial models that use one source of variation only. RESULTS: Overall, holobiont models performed better than partial models. Host genotype was especially relevant for predicting adaptive immunity traits (i.e., concentration of immunoglobulins M and G), whereas microbial composition was important for predicting innate immunity traits (i.e., concentration of haptoglobin and C-reactive protein and lymphocyte phagocytic capacity). None of the models was uniformly best across all traits. We observed a greater variability in predictive accuracies across models when microbiability (the variance explained by the microbiome) was high. Clustering microbial abundances did not necessarily increase predictive accuracy. CONCLUSIONS: Gut microbiota information is useful for predicting immunocompetence traits, especially those related to innate immunity. Modelling microbiome abundances deserves special attention when microbiability is high. Clustering microbial data for prediction is not recommended by default.


Assuntos
Genoma , Genômica , Animais , Suínos , Teorema de Bayes , Genótipo , Fenótipo , Genômica/métodos
3.
Genet Sel Evol ; 54(1): 46, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761200

RESUMO

BACKGROUND: The rabbit cecum hosts and interacts with a complex microbial ecosystem that contributes to the variation of traits of economic interest. Although the influence of host genetics on microbial diversity and specific microbial taxa has been studied in several species (e.g., humans, pigs, or cattle), it has not been investigated in rabbits. Using a Bayes factor approach, the aim of this study was to dissect the effects of host genetics, litter and cage on 984 microbial traits that are representative of the rabbit microbiota. RESULTS: Analysis of 16S rDNA sequences of cecal microbiota from 425 rabbits resulted in the relative abundances of 29 genera, 951 operational taxonomic units (OTU), and four microbial alpha-diversity indices. Each of these microbial traits was adjusted with mixed linear and zero-inflated Poisson (ZIP) models, which all included additive genetic, litter and cage effects, and body weight at weaning and batch as systematic factors. The marginal posterior distributions of the model parameters were estimated using MCMC Bayesian procedures. The deviance information criterion (DIC) was used for model comparison regarding the statistical distribution of the data (normal or ZIP), and the Bayes factor was computed as a measure of the strength of evidence in favor of the host genetics, litter, and cage effects on microbial traits. According to DIC, all microbial traits were better adjusted with the linear model except for the OTU present in less than 10% of the animals, and for 25 of the 43 OTU with a frequency between 10 and 25%. On a global scale, the Bayes factor revealed substantial evidence in favor of the genetic control of the number of observed OTU and Shannon indices. At the taxon-specific level, significant proportions of the OTU and relative abundances of genera were influenced by additive genetic, litter, and cage effects. Several members of the genera Bacteroides and Parabacteroides were strongly influenced by the host genetics and nursing environment, whereas the family S24-7 and the genus Ruminococcus were strongly influenced by cage effects. CONCLUSIONS: This study demonstrates that host genetics shapes the overall rabbit cecal microbial diversity and that a significant proportion of the taxa is influenced either by host genetics or environmental factors, such as litter and/or cage.


Assuntos
Microbiota , Animais , Teorema de Bayes , Bovinos , Ceco , Microbiota/genética , RNA Ribossômico 16S/genética , Coelhos , Suínos , Desmame
4.
Genet Sel Evol ; 54(1): 81, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536288

RESUMO

BACKGROUND: The effect of the cecal microbiome on growth of rabbits that were fed under different regimes has been studied previously. However, the term "effect" carries a causal meaning that can be confounded because of potential genetic associations between the microbiome and production traits. Structural equation models (SEM) can help disentangle such a complex interplay by decomposing the effect on a production trait into direct host genetics effects and indirect host genetic effects that are exerted through microbiota effects. These indirect effects can be estimated via structural coefficients that measure the effect of the microbiota on growth while the effects of the host genetics are kept constant. In this study, we applied the SEM approach to infer causal relationships between the cecal microbiota and growth of rabbits fed under ad libitum (ADGAL) or restricted feeding (ADGR). RESULTS: We identified structural coefficients that are statistically different from 0 for 138 of the 946 operational taxonomic units (OTU) analyzed. However, only 15 and 38 of these 138 OTU had an effect greater than 0.2 phenotypic standard deviations (SD) on ADGAL and ADGR, respectively. Many of these OTU had a negative effect on both traits. The largest effects on ADGR were exerted by an OTU that is taxonomically assigned to the Desulfovibrio genus (- 1.929 g/d, CSS-normalized OTU units) and by an OTU that belongs to the Ruminococcaceae family (1.859 g/d, CSS-normalized OTU units). For ADGAL, the largest effect was from OTU that belong to the S24-7 family (- 1.907 g/d, CSS-normalized OTU units). In general, OTU that had a substantial effect had low to moderate estimates of heritability. CONCLUSIONS: Disentangling how direct and indirect effects act on production traits is relevant to fully describe the processes of mediation but also to understand how these traits change before considering the application of an external intervention aimed at changing a given microbial composition by blocking/promoting the presence of a particular microorganism.


Assuntos
Microbiota , Animais , Coelhos , Ceco , RNA Ribossômico 16S/genética
5.
Anim Genet ; 53(5): 613-626, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35811409

RESUMO

The contribution of microRNAs (miRNAs) to mRNA post-transcriptional regulation has often been explored by the post hoc selection of downregulated genes and determining whether they harbor binding sites for miRNAs of interest. This approach, however, does not discriminate whether these mRNAs are also downregulated at the transcriptional level. Here, we have characterized the transcriptional and post-transcriptional changes in mRNA expression in two porcine tissues: gluteus medius muscle of fasted and fed Duroc gilts and adipose tissue of lean and obese Duroc-Göttingen minipigs. Exon-intron split analysis of RNA-seq data allowed us to identify downregulated mRNAs with high post-transcriptional signals in fed or obese states, and we assessed whether they harbor binding sites for upregulated miRNAs in any of these two physiological states. We found 26 downregulated mRNAs with high post-transcriptional signals in the muscle of fed gilts and 21 of these were predicted targets of miRNAs upregulated in fed pigs. For adipose tissue, 44 downregulated mRNAs in obese minipigs displayed high post-transcriptional signals, and 25 of these were predicted targets of miRNAs upregulated in the obese state. These results suggest that the contribution of miRNAs to mRNA repression is more prominent in the skeletal muscle system. Finally, we identified several genes that may play relevant roles in the energy homeostasis of the pig skeletal muscle (DKK2 and PDK4) and adipose (SESN3 and ESRRG) tissues. By differentiating transcriptional from post-transcriptional changes in mRNA expression, exon-intron split analysis provides a valuable view of the regulation of gene expression, complementary to canonical differential expression analyses.


Assuntos
MicroRNAs , Doenças dos Suínos , Animais , Éxons , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Íntrons , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos/genética , Doenças dos Suínos/genética , Porco Miniatura/genética , Porco Miniatura/metabolismo
6.
PLoS Genet ; 15(10): e1008279, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603892

RESUMO

Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5'-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.


Assuntos
Adipogenia/genética , Proteínas do Citoesqueleto/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Miosinas/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Cruzamento , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Carne , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Motivos de Nucleotídeos , Sus scrofa/genética , Sus scrofa/metabolismo , Suínos
7.
Bioinformatics ; 36(7): 2298-2299, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738392

RESUMO

MOTIVATION: We present Link-HD, an approach to integrate multiple datasets. Link-HD is a generalization of 'Structuration des Tableaux A Trois Indices de la Statistique-Analyse Conjointe de Tableaux', a family of methods designed to integrate information from heterogeneous data. Here, we extend the classical approach to deal with broader datasets (e.g. compositional data), methods for variable selection and taxon-set enrichment analysis. RESULTS: The methodology is demonstrated by integrating rumen microbial communities from cows for which methane yield (CH4y) was individually measured. Our approach reproduces the significant link between rumen microbiota structure and CH4 emission. When analyzing the TARA's ocean data, Link-HD replicates published results, highlighting the relevance of temperature with members of phyla Proteobacteria on the structure and functionality of this ecosystem. AVAILABILITY AND IMPLEMENTATION: The source code, examples and a complete manual are freely available in GitHub https://github.com/lauzingaretti/LinkHD and in Bioconductor https://bioconductor.org/packages/release/bioc/html/LinkHD.html.


Assuntos
Microbiota , Software , Animais , Bovinos , Feminino
8.
Genet Sel Evol ; 53(1): 65, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362312

RESUMO

BACKGROUND: Analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological links between the host's genome, microbiome, and phenome be recovered? METHODS: Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data. RESULTS: Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance components estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with Bayes C depended, in part, on the number of microorganisms' taxa that influence the phenotype. CONCLUSIONS: While we conclude that, overall, genome-microbiome-links can be characterized using variance component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-microbiome-phenome studies. The R code to replicate the analyses is in https://github.com/miguelperezenciso/simubiome .


Assuntos
Bovinos/genética , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla/métodos , Genoma , Herança Multifatorial , Animais , Teorema de Bayes , Bovinos/microbiologia , Simulação por Computador , Fenótipo
9.
Genet Sel Evol ; 53(1): 3, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397281

RESUMO

BACKGROUND: In the early 20th century, Cuban farmers imported Charolais cattle (CHFR) directly from France. These animals are now known as Chacuba (CHCU) and have become adapted to the rough environmental tropical conditions in Cuba. These conditions include long periods of drought and food shortage with extreme temperatures that European taurine cattle have difficulty coping with. RESULTS: In this study, we used whole-genome sequence data from 12 CHCU individuals together with 60 whole-genome sequences from six additional taurine, indicus and crossed breeds to estimate the genetic diversity, structure and accurate ancestral origin of the CHCU animals. Although CHCU animals are assumed to form a closed population, the results of our admixture analysis indicate a limited introgression of Bos indicus. We used the extended haplotype homozygosity (EHH) approach to identify regions in the genome that may have had an important role in the adaptation of CHCU to tropical conditions. Putative selection events occurred in genomic regions with a high proportion of Bos indicus, but they were not sufficient to explain adaptation of CHCU to tropical conditions by Bos indicus introgression only. EHH suggested signals of potential adaptation in genomic windows that include genes of taurine origin involved in thermogenesis (ATP9A, GABBR1, PGR, PTPN1 and UCP1) and hair development (CCHCR1 and CDSN). Within these genes, we identified single nucleotide polymorphisms (SNPs) that may have a functional impact and contribute to some of the observed phenotypic differences between CHCU and CHFR animals. CONCLUSIONS: Whole-genome data confirm that CHCU cattle are closely related to Charolais from France (CHFR) and Canada, but also reveal a limited introgression of Bos indicus genes in CHCU. We observed possible signals of recent adaptation to tropical conditions between CHCU and CHFR founder populations, which were largely independent of the Bos indicus introgression. Finally, we report candidate genes and variants that may have a functional impact and explain some of the phenotypic differences observed between CHCU and CHFR cattle.


Assuntos
Bovinos/genética , Genótipo , Polimorfismo Genético , Termotolerância/genética , Pelo Animal/metabolismo , Animais , Bovinos/fisiologia , Haplótipos , Homozigoto , Termogênese/genética , Clima Tropical , Sequenciamento Completo do Genoma
10.
Genet Sel Evol ; 52(1): 72, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292187

RESUMO

BACKGROUND: Genetic pressure in animal breeding is sparking the interest of breeders for selecting elite boars with higher sperm quality to optimize ejaculate doses and fertility rates. However, the molecular basis of sperm quality is not yet fully understood. Our aim was to identify candidate genes, pathways and DNA variants associated to sperm quality in swine by analysing 25 sperm-related phenotypes and integrating genome-wide association studies (GWAS) and RNA-seq under a systems biology framework. RESULTS: By GWAS, we identified 12 quantitative trait loci (QTL) associated to the percentage of head and neck abnormalities, abnormal acrosomes and motile spermatozoa. Candidate genes included CHD2, KATNAL2, SLC14A2 and ABCA1. By RNA-seq, we identified a wide repertoire of mRNAs (e.g. PRM1, OAZ3, DNAJB8, TPPP2 and TNP1) and miRNAs (e.g. ssc-miR-30d, ssc-miR-34c, ssc-miR-30c-5p, ssc-miR-191, members of the let-7 family and ssc-miR-425-5p) with functions related to sperm biology. We detected 6128 significant correlations (P-value ≤ 0.05) between sperm traits and mRNA abundances. By expression (e)GWAS, we identified three trans-expression QTL involving the genes IQCJ, ACTR2 and HARS. Using the GWAS and RNA-seq data, we built a gene interaction network. We considered that the genes and interactions that were present in both the GWAS and RNA-seq networks had a higher probability of being actually involved in sperm quality and used them to build a robust gene interaction network. In addition, in the final network we included genes with RNA abundances correlated with more than four semen traits and miRNAs interacting with the genes on the network. The final network was enriched for genes involved in gamete generation and development, meiotic cell cycle, DNA repair or embryo implantation. Finally, we designed a panel of 73 SNPs based on the GWAS, eGWAS and final network data, that explains between 5% (for sperm cell concentration) and 36% (for percentage of neck abnormalities) of the phenotypic variance of the sperm traits. CONCLUSIONS: By applying a systems biology approach, we identified genes that potentially affect sperm quality and constructed a SNP panel that explains a substantial part of the phenotypic variance for semen quality in our study and that should be tested in other swine populations to evaluate its relevance for the pig breeding sector.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Infertilidade Masculina/genética , RNA-Seq/métodos , Espermatozoides/fisiologia , Suínos/genética , Biologia de Sistemas/métodos , Animais , Estudo de Associação Genômica Ampla/veterinária , Infertilidade Masculina/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA-Seq/veterinária , Espermatozoides/metabolismo , Suínos/fisiologia
11.
Genet Sel Evol ; 52(1): 67, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167870

RESUMO

BACKGROUND: French beef producers suffer from the decrease in profitability of their farms mainly because of the continuous increase in feed costs. Selection for feed efficiency in beef cattle represents a relevant solution to face this problem. However, feed efficiency is a complex trait that can be assessed by three major criteria: residual feed intake (RFI), residual gain (RG) and feed efficiency ratio (FE), which involve different genetic determinisms. An analysis that combines phenotype and whole-genome sequence data provides a unique framework for genomic studies. The aim of our study was to identify the gene networks and the biological processes that are responsible for the genetic determinism that is shared between these three feed efficiency criteria. RESULTS: A population of 1477 French Charolais young bulls was phenotyped for feed intake (FI), average daily gain (ADG) and final weight (FW) to estimate RFI, RG and FE. A subset of 789 young bulls was genotyped on the BovineSNP50 single nucleotide polymorphism (SNP) array and imputed at the sequence level using RUN6 of the 1000 Bull Genomes Project. We conducted a genome-wide association study (GWAS) to estimate the individual effect of 8.5 million SNPs and applied an association weight matrix (AWM) approach to analyse the results, one for each feed efficiency criterion. The results highlighted co-association networks including 626 genes for RFI, 426 for RG and 564 for FE. Enrichment assessment revealed the biological processes that show the strongest association with RFI, RG and FE, i.e. digestive tract (salivary, gastric and mucin secretion) and metabolic processes (cellular and cardiovascular). Energetic functions were more associated with RFI and FE and cardio-vascular and cellular processes with RG. Several hormones such as apelin, glucagon, insulin, aldosterone, the gonadotrophin releasing hormone and the thyroid hormone were also identified, and these should be tested in future studies as candidate biomarkers for feed efficiency. CONCLUSIONS: The combination of network and pathway analyses at the sequence level led to the identification of both common and specific mechanisms that are involved in RFI, RG and FE, and to a better understanding of the genetic determinism underlying these three criteria. The effects of the genes involved in each of the identified processes need to be tested in genomic evaluations to confirm the potential gain in reliability of using functional variants to select animals for feed efficiency.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/genética , Bovinos/genética , Redes Reguladoras de Genes , Animais , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Digestão/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
12.
J Anim Breed Genet ; 137(1): 49-59, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31418488

RESUMO

Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4 ) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4 y = CH4 /DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4 y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4 y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial least-squares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4 y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4 y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.


Assuntos
Bovinos/metabolismo , Bovinos/microbiologia , Indústria de Laticínios , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Metano/biossíntese , Animais , Biomarcadores/metabolismo , DNA Bacteriano/genética , Metagenômica , Fenótipo
13.
BMC Genomics ; 20(1): 518, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234802

RESUMO

BACKGROUND: The comparison of expression QTL (eQTL) maps obtained in different tissues is an essential step to understand how gene expression is genetically regulated in a context-dependent manner. In the current work, we have compared the transcriptomic and eQTL profiles of two porcine tissues (skeletal muscle and liver) which typically show highly divergent expression profiles, in 103 Duroc pigs genotyped with the Porcine SNP60 BeadChip (Illumina) and with available microarray-based measurements of hepatic and muscle mRNA levels. Since structural variation could have effects on gene expression, we have also investigated the co-localization of cis-eQTLs with copy number variant regions (CNVR) segregating in this Duroc population. RESULTS: The analysis of differential expresssion revealed the existence of 1204 and 1490 probes that were overexpressed and underexpressed in the gluteus medius muscle when compared to liver, respectively (|fold-change| > 1.5, q-value < 0.05). By performing genome scans in 103 Duroc pigs with available expression and genotypic data, we identified 76 and 28 genome-wide significant cis-eQTLs regulating gene expression in the gluteus medius muscle and liver, respectively. Twelve of these cis-eQTLs were shared by both tissues (i.e. 42.8% of the cis-eQTLs identified in the liver were replicated in the gluteus medius muscle). These results are consistent with previous studies performed in humans, where 50% of eQTLs were shared across tissues. Moreover, we have identified 41 CNVRs in a set of 350 pigs from the same Duroc population, which had been genotyped with the Porcine SNP60 BeadChip by using the PennCNV and GADA softwares, but only a small proportion of these CNVRs co-localized with the cis-eQTL signals. CONCLUSION: Despite the fact that there are considerable differences in the gene expression patterns of the porcine liver and skeletal muscle, we have identified a substantial proportion of common cis-eQTLs regulating gene expression in both tissues. Several of these cis-eQTLs influence the mRNA levels of genes with important roles in meat (CTSF) and carcass quality (TAPT1), lipid metabolism (TMEM97) and obesity (MARC2), thus evidencing the practical importance of dissecting the genetic mechanisms involved in their expression.


Assuntos
Regulação da Expressão Gênica , Fígado/metabolismo , Músculo Esquelético/metabolismo , Suínos/genética , Animais , Dosagem de Genes , Perfilação da Expressão Gênica , Masculino , Locos de Características Quantitativas , Transcriptoma
14.
Genet Sel Evol ; 51(1): 48, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477014

RESUMO

BACKGROUND: Feed efficiency (FE) has a major impact on the economic sustainability of pig production. We used a systems-based approach that integrates single nucleotide polymorphism (SNP) co-association and gene-expression data to identify candidate genes, biological pathways, and potential predictors of FE in a Duroc pig population. RESULTS: We applied an association weight matrix (AWM) approach to analyse the results from genome-wide association studies (GWAS) for nine FE associated and production traits using 31K SNPs by defining residual feed intake (RFI) as the target phenotype. The resulting co-association network was formed by 829 SNPs. Additive effects of this SNP panel explained 61% of the phenotypic variance of RFI, and the resulting phenotype prediction accuracy estimated by cross-validation was 0.65 (vs. 0.20 using pedigree-based best linear unbiased prediction and 0.12 using the 31K SNPs). Sixty-eight transcription factor (TF) genes were identified in the co-association network; based on the lossless approach, the putative main regulators were COPS5, GTF2H5, RUNX1, HDAC4, ESR1, USP16, SMARCA2 and GTF2F2. Furthermore, gene expression data of the gluteus medius muscle was explored through differential expression and multivariate analyses. A list of candidate genes showing functional and/or structural associations with FE was elaborated based on results from both AWM and gene expression analyses, and included the aforementioned TF genes and other ones that have key roles in metabolism, e.g. ESRRG, RXRG, PPARGC1A, TCF7L2, LHX4, MAML2, NFATC3, NFKBIZ, TCEA1, CDCA7L, LZTFL1 or CBFB. The most enriched biological pathways in this list were associated with behaviour, immunity, nervous system, and neurotransmitters, including melatonin, glutamate receptor, and gustation pathways. Finally, an expression GWAS allowed identifying 269 SNPs associated with the candidate genes' expression (eSNPs). Addition of these eSNPs to the AWM panel of 829 SNPs did not improve the accuracy of genomic predictions. CONCLUSIONS: Candidate genes that have a direct or indirect effect on FE-related traits belong to various biological processes that are mainly related to immunity, behaviour, energy metabolism, and the nervous system. The pituitary gland, hypothalamus and thyroid axis, and estrogen signalling play fundamental roles in the regulation of FE in pigs. The 829 selected SNPs explained 61% of the phenotypic variance of RFI, which constitutes a promising perspective for applying genetic selection on FE relying on molecular-based prediction.


Assuntos
Ração Animal , Suínos/genética , Agricultura , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Ingestão de Alimentos , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Suínos/crescimento & desenvolvimento
15.
Genet Sel Evol ; 51(1): 34, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262251

RESUMO

BACKGROUND: Milk quality in dairy cattle is routinely assessed via analysis of mid-infrared (MIR) spectra; this approach can also be used to predict the milk's cheese-making properties (CMP) and composition. When this method of high-throughput phenotyping is combined with efficient imputations of whole-genome sequence data from cows' genotyping data, it provides a unique and powerful framework with which to carry out genomic analyses. The goal of this study was to use this approach to identify genes and gene networks associated with milk CMP and composition in the Montbéliarde breed. RESULTS: Milk cheese yields, coagulation traits, milk pH and contents of proteins, fatty acids, minerals, citrate, and lactose were predicted from MIR spectra. Thirty-six phenotypes from primiparous Montbéliarde cows (1,442,371 test-day records from 189,817 cows) were adjusted for non-genetic effects and averaged per cow. 50 K genotypes, which were available for a subset of 19,586 cows, were imputed at the sequence level using Run6 of the 1000 Bull Genomes Project (comprising 2333 animals). The individual effects of 8.5 million variants were evaluated in a genome-wide association study (GWAS) which led to the detection of 59 QTL regions, most of which had highly significant effects on CMP and milk composition. The results of the GWAS were further subjected to an association weight matrix and the partial correlation and information theory approach and we identified a set of 736 co-associated genes. Among these, the well-known caseins, PAEP and DGAT1, together with dozens of other genes such as SLC37A1, ALPL, MGST1, SEL1L3, GPT, BRI3BP, SCD, GPAT4, FASN, and ANKH, explained from 12 to 30% of the phenotypic variance of CMP traits. We were further able to identify metabolic pathways (e.g., phosphate and phospholipid metabolism and inorganic anion transport) and key regulator genes, such as PPARA, ASXL3, and bta-mir-200c that are functionally linked to milk composition. CONCLUSIONS: By using an approach that integrated GWAS with network and pathway analyses at the whole-genome sequence level, we propose candidate variants that explain a substantial proportion of the phenotypic variance of CMP traits and could thus be included in genomic evaluation models to improve milk CMP in Montbéliarde cows.


Assuntos
Bovinos/genética , Queijo , Estudo de Associação Genômica Ampla/veterinária , Leite/química , Animais , Simulação por Computador , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/veterinária
17.
BMC Genomics ; 18(1): 187, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212624

RESUMO

BACKGROUND: Endurance exercise in horses requires adaptive processes involving physiological, biochemical, and cognitive-behavioral responses in an attempt to regain homeostasis. We hypothesized that the identification of the relationships between blood metabolome, transcriptome, and miRNome during endurance exercise in horses could provide significant insights into the molecular response to endurance exercise. For this reason, the serum metabolome and whole-blood transcriptome and miRNome data were obtained from ten horses before and after a 160 km endurance competition. RESULTS: We obtained a global regulatory network based on 11 unique metabolites, 263 metabolic genes and 5 miRNAs whose expression was significantly altered at T1 (post- endurance competition) relative to T0 (baseline, pre-endurance competition). This network provided new insights into the cross talk between the distinct molecular pathways (e.g. energy and oxygen sensing, oxidative stress, and inflammation) that were not detectable when analyzing single metabolites or transcripts alone. Single metabolites and transcripts were carrying out multiple roles and thus sharing several biochemical pathways. Using a regulatory impact factor metric analysis, this regulatory network was further confirmed at the transcription factor and miRNA levels. In an extended cohort of 31 independent animals, multiple factor analysis confirmed the strong associations between lactate, methylene derivatives, miR-21-5p, miR-16-5p, let-7 family and genes that coded proteins involved in metabolic reactions primarily related to energy, ubiquitin proteasome and lipopolysaccharide immune responses after the endurance competition. Multiple factor analysis also identified potential biomarkers at T0 for an increased likelihood for failure to finish an endurance competition. CONCLUSIONS: To the best of our knowledge, the present study is the first to provide a comprehensive and integrated overview of the metabolome, transcriptome, and miRNome co-regulatory networks that may have a key role in regulating the metabolic and immune response to endurance exercise in horses.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , MicroRNAs/genética , Condicionamento Físico Animal/fisiologia , Resistência Física/genética , Biologia de Sistemas , Adaptação Fisiológica/genética , Animais , Biomarcadores/sangue , Redes Reguladoras de Genes , Cavalos , Fatores de Transcrição/metabolismo
18.
Genet Sel Evol ; 48: 37, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107817

RESUMO

BACKGROUND: Studies to identify markers associated with beef tenderness have focused on Warner-Bratzler shear force (WBSF) but the interplay between the genes associated with WBSF has not been explored. We used the association weight matrix (AWM), a systems biology approach, to identify a set of interacting genes that are co-associated with tenderness and other meat quality traits, and shared across the Charolaise, Limousine and Blonde d'Aquitaine beef cattle breeds. RESULTS: Genome-wide association studies were performed using ~500K single nucleotide polymorphisms (SNPs) and 17 phenotypes measured on more than 1000 animals for each breed. First, this multi-trait approach was applied separately for each breed across 17 phenotypes and second, between- and across-breed comparisons at the AWM and functional levels were performed. Genetic heterogeneity was observed, and most of the variants that were associated with WBSF segregated within rather than across breeds. We identified 206 common candidate genes associated with WBSF across the three breeds. SNPs in these common genes explained between 28 and 30 % of the phenotypic variance for WBSF. A reduced number of common SNPs mapping to the 206 common genes were identified, suggesting that different mutations may target the same genes in a breed-specific manner. Therefore, it is likely that, depending on allele frequencies and linkage disequilibrium patterns, a SNP that is identified for one breed may not be informative for another unrelated breed. Well-known candidate genes affecting beef tenderness were identified. In addition, some of the 206 common genes are located within previously reported quantitative trait loci for WBSF in several cattle breeds. Moreover, the multi-breed co-association analysis detected new candidate genes, regulators and metabolic pathways that are likely involved in the determination of meat tenderness and other meat quality traits in beef cattle. CONCLUSIONS: Our results suggest that systems biology approaches that explore associations of correlated traits increase statistical power to identify candidate genes beyond the one-dimensional approach. Further studies on the 206 common genes, their pathways, regulators and interactions will expand our knowledge on the molecular basis of meat tenderness and could lead to the discovery of functional mutations useful for genomic selection in a multi-breed beef cattle context.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla/veterinária , Carne Vermelha/análise , Biologia de Sistemas , Animais , Cruzamento , França , Frequência do Gene , Genômica , Genótipo , Desequilíbrio de Ligação/genética , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
BMC Genomics ; 15: 232, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24666776

RESUMO

BACKGROUND: Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans. RESULTS: The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression. CONCLUSIONS: Our results recapitulate the known transcriptional regulation of FA metabolism, predict gene interactions that can be experimentally validated, and suggest that genetic variants mapped to EP300, FHL2, and NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.


Assuntos
Ácidos Graxos/química , Redes Reguladoras de Genes/genética , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único , RNA/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Fígado/metabolismo , Masculino , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA