Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33649184

RESUMO

Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aß) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aß mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aß burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Células Mieloides/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Canal de Potássio Kv1.3/genética , Masculino , Camundongos
2.
J Neurosci Res ; 99(6): 1704-1721, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33729626

RESUMO

The importance of mitogen-activated protein kinase (MAPK) pathway signaling in regulating microglia-mediated neuroinflammation in Alzheimer's disease (AD) remains unclear. We examined the role of MAPK signaling in microglia using a preclinical model of AD pathology and quantitative proteomics studies of postmortem human brains. In multiplex immunoassay analyses of MAPK phosphoproteins in acutely isolated microglia and brain tissue from 5xFAD mice, we found phosphorylated extracellular signal-regulated kinase (ERK) was the most strongly upregulated phosphoprotein within the MAPK pathway in acutely isolated microglia, but not whole-brain tissue from 5xFAD mice. The importance of ERK signaling in primary microglia cultures was next investigated using transcriptomic profiling and functional assays of amyloid-ß and neuronal phagocytosis, which confirmed that ERK is a critical regulator of IFNγ-mediated pro-inflammatory activation of microglia, although it was also partly important for constitutive microglial functions. Phospho-ERK was an upstream regulator of disease-associated microglial gene expression (Trem2, Tyrobp), as well as several human AD risk genes (Bin1, Cd33, Trem2, Cnn2), indicative of the importance of microglial ERK signaling in AD pathology. Quantitative proteomic analyses of postmortem human brain showed that ERK1 and ERK2 were the only MAPK proteins with increased protein expression and positive associations with neuropathological grade. In a human brain phosphoproteomic study, we found evidence for increased flux through the ERK signaling pathway in AD. Overall, our analyses strongly suggest that ERK phosphorylation, particularly in microglia in mouse models, is a regulator of pro-inflammatory immune responses in AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Sistema de Sinalização das MAP Quinases/genética , Microglia/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Expressão Gênica , Masculino , Camundongos , Fagocitose , Fosforilação , Cultura Primária de Células , Transcriptoma
3.
Epilepsia ; 61(8): 1723-1734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32777090

RESUMO

OBJECTIVE: Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRg-LITT) is an alternative to open epilepsy surgery. We assess safety and effectiveness of MRg-LITT for extratemporal lobe epilepsy (ETLE) in patients who are considered less favorable for open resection. METHODS: We retrospectively reviewed sequential cases of patients with focal ETLE who underwent MRg-LITT between 2012 and 2019. Epileptogenic zones were determined from standard clinical and imaging data ± stereoelectroencephalography (SEEG). Standard stereotactic techniques, MRI thermometry, and a commercial laser thermal therapy system were used for ablations. Anatomic MRI was used to calculate ablation volumes. Clinical outcomes were determined longitudinally. RESULTS: Thirty-five patients with mean epilepsy duration of 21.3 ± 12.2 years underwent MRg-LITT for focal ETLE at a mean age 36.4 ± 12.7 years. A mean 2.59 ± 1.45 trajectories per patient were used to obtain ablation volumes of 8.8 ± 7.5 cm3 . Mean follow-up was 27.3 ± 19.5 months. Of 32 patients with >12 months of follow-up, 17 (53%) achieved good outcomes (Engel class I + II) of whom 14 (44%) were Engel class I. Subgroup analysis revealed better outcomes for patients with lesional ETLE than for those who were nonlesional, multifocal, or who had failed prior interventions (P = .02). Of 13 patients showing favorable seizure-onset patterns (localized low voltage fast activity or rhythmic spiking on SEEG) prior to ablation, 9 (69%) achieved good outcomes, whereas only 3 of 11 (27%) who show other slower onset patterns achieved good outcomes. Minor adverse events included six patients with transient sensorimotor neurologic deficits and four patients with asymptomatic hemorrhages along the fiber tract. Major adverse events included one patient with a brain abscess that required stereotactic drainage and one patient with persistent hypothalamic obesity. Three deaths-two seizure-associated and one suicide-were unrelated to surgical procedures. SIGNIFICANCE: MRI-guided laser interstitial thermal therapy (or MRg-LITT) was well-tolerated and yielded good outcomes in a heterogeneous group of ETLE patients. Lesional epilepsy and favorable seizure-onset patterns on SEEG predicted higher likelihoods of success.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/cirurgia , Terapia a Laser/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Epilepsia do Lobo Frontal/cirurgia , Feminino , Giro do Cíngulo/cirurgia , Humanos , Hipotálamo/cirurgia , Masculino , Pessoa de Meia-Idade , Lobo Occipital/cirurgia , Lobo Parietal/cirurgia , Técnicas Estereotáxicas , Cirurgia Assistida por Computador/métodos , Adulto Jovem
4.
J Neuroinflammation ; 16(1): 116, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153377

RESUMO

BACKGROUND: Microglia and CNS-infiltrating monocytes/macrophages (CNS-MPs) perform pro-inflammatory and protective anti-inflammatory functions following ischemic stroke. Selective inhibition of pro-inflammatory responses can be achieved by Kv1.3 channel blockade, resulting in a lower infarct size in the transient middle cerebral artery occlusion (tMCAO) model. Whether beneficial effects of Kv1.3 blockers are mediated by targeting microglia or CNS-infiltrating monocytes/macrophages remains unclear. METHODS: In the 30-min tMCAO mouse model, we profiled functional cell-surface Kv1.3 channels and phagocytic properties of acutely isolated CNS-MPs at various timepoints post-reperfusion. Kv1.3 channels were flow cytometrically detected using fluorescein-conjugated Kv1.3-binding peptide ShK-F6CA as well as by immunohistochemistry. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was performed to measure Kv1.3 (Kcna3) and Kir2.1 (Kcnj2) gene expression. Phagocytosis of 1-µm microspheres by acutely isolated CNS-MPs was measured by flow cytometry. RESULTS: In flow cytometric assays, Kv1.3 channel expression by CD11b+ CNS-MPs was increased between 24 and 72 h post-tMCAO and decreased by 7 days post-tMCAO. Increased Kv1.3 expression was restricted to CD11b+CD45lowLy6clow (microglia) and CD11b+CD45highLy6Clow CNS-MPs but not CD11b+CD45highLy6chigh inflammatory monocytes/macrophages. In immunohistochemical studies, Kv1.3 protein expression was increased in Iba1+ microglia at 24-48 h post-tMCAO. No change in Kv1.3 mRNA in CNS-MPs was observed following tMCAO. CONCLUSIONS: We conclude that resident microglia and a subset of CD45highLy6clow CNS-MPs are the likely cellular targets of Kv1.3 blockers and the delayed phase of neuroinflammation is the optimal therapeutic window for Kv1.3 blockade in ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Canal de Potássio Kv1.3/biossíntese , Fagócitos/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Expressão Gênica , Canal de Potássio Kv1.3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Fatores de Tempo
5.
Mol Neurodegener ; 17(1): 33, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526014

RESUMO

BACKGROUND: The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS: Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS: Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS: Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Microglia , Proteínas Nucleares , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/metabolismo , Animais , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteômica , Transcriptoma , Proteínas Supressoras de Tumor/genética
6.
J Vis Exp ; (160)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32658196

RESUMO

Microglia and central nervous system (CNS)-infiltrating macrophages, collectively called CNS mononuclear phagocytes (CNS-MPs), play central roles in neurological diseases including neurodegeneration and stroke. CNS-MPs are involved in phagocytic clearance of pathological proteins, debris and neuronal synapses, each with distinct underlying molecular pathways. Characterizing these phagocytic properties can provide a functional readout that compliments molecular profiling of microglia using traditional flow cytometry, transcriptomics and proteomics approaches. Phagocytic profiling of microglia has relied on microscopic visualization and in vitro cultures of mouse neonatal microglia. The former approach suffers from limited sampling while the latter approach is inherently poorly reflective of the true in vivo state of adult CNS-MPs. This paper describes optimized protocols to phenotype phagocytic properties of acutely-isolated mouse CNS-MPs by flow cytometry. CNS-MPs are acutely isolated from adult mouse brain using mechanical dissociation followed by density gradient centrifugation, incubated with fluorescent microspheres or fluorescent Aß fibrils, washed, and then labeled with panels of antibodies against surface markers (CD11b, CD45). Using this approach, it is possible to compare phagocytic properties of brain-resident microglia with CNS-infiltrating macrophages and then assess the effect of aging and disease pathology on these phagocytic phenotypes. This rapid method also holds potential to functionally phenotype acutely-isolated human CNS-MPs from post-mortem or surgical brain specimens. Additionally, specific mechanisms of phagocytosis by CNS-MP subsets can be investigated by inhibiting select phagocytic pathways.


Assuntos
Encéfalo/citologia , Citometria de Fluxo/métodos , Macrófagos/citologia , Microglia/imunologia , Fagocitose , Adulto , Antígeno CD11b/metabolismo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
7.
Mol Neurodegener ; 15(1): 28, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381088

RESUMO

BACKGROUND: Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. METHODS: We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. RESULTS: Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aß plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aß phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. CONCLUSIONS: Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.


Assuntos
Doença de Alzheimer/metabolismo , Citometria de Fluxo , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Citometria de Fluxo/métodos , Humanos , Camundongos , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA