Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 131(10): 842-858, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36205127

RESUMO

BACKGROUND: The arterial pole of the heart is a hotspot for life-threatening forms of congenital heart defects (CHDs). Development of this cardiac region occurs by addition of Second Heart Field (SHF) progenitor cells to the embryonic outflow tract (OFT) and subsequently the base of the ascending aorta and pulmonary trunk. Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is essential to provide further insights into the cause of CHDs. METHODS: A synergistic combination of bioinformatic analysis and mouse genetics as well as embryo and explant culture experiments were used to dissect the cross-regulatory transcriptional circuitry operating in future subaortic and subpulmonary OFT myocardium. RESULTS: Here, we show that the lipid sensor PPARγ (peroxisome proliferator-activated receptor gamma) is expressed in future subpulmonary myocardium in the inferior wall of the OFT and that PPARγ signaling-related genes display regionalized OFT expression regulated by the transcription factor TBX1 (T-box transcription factor 1). Modulating PPARγ activity in ex vivo cultured embryos treated with a PPARγ agonist or antagonist or deleting Pparγ in cardiac progenitor cells using Mesp1-Cre reveals that Pparγ is required for addition of future subpulmonary myocardium and normal arterial pole development. Additionally, the non-canonical DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH (Notch receptor 1)/HES1 (Hes family bHLH transcription factor 1) pathway negatively regulates Pparγ in future subaortic myocardium in the superior OFT wall. CONCLUSIONS: Together these results identify Pparγ as a regulator of regional transcriptional identity in the developing heart, providing new insights into gene interactions involved in congenital heart defects.


Assuntos
Cardiopatias Congênitas , PPAR gama , Animais , Camundongos , Coração , Cardiopatias Congênitas/genética , Miocárdio/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Receptores Notch/metabolismo
2.
Circ Res ; 115(9): 790-9, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25190705

RESUMO

RATIONALE: Cardiac progenitor cells from the second heart field (SHF) contribute to rapid growth of the embryonic heart, giving rise to right ventricular and outflow tract (OFT) myocardium at the arterial pole of the heart, and atrial myocardium at the venous pole. Recent clonal analysis and cell-tracing experiments indicate that a common progenitor pool in the posterior region of the SHF gives rise to both OFT and atrial myocytes. The mechanisms regulating deployment of this progenitor pool remain unknown. OBJECTIVE: To evaluate the role of TBX1, the major gene implicated in congenital heart defects in 22q11.2 deletion syndrome patients, in posterior SHF development. METHODS AND RESULTS: Using transcriptome analysis, genetic tracing, and fluorescent dye-labeling experiments, we show that Tbx1-dependent OFT myocardium originates in Hox-expressing cells in the posterior SHF. In Tbx1 null embryos, OFT progenitor cells fail to segregate from this progenitor cell pool, leading to failure to expand the dorsal pericardial wall and altered positioning of the cardiac poles. Unexpectedly, addition of SHF cells to the venous pole of the heart is also impaired, resulting in abnormal development of the dorsal mesenchymal protrusion, and partially penetrant atrioventricular septal defects, including ostium primum defects. CONCLUSIONS: Tbx1 is required for inflow as well as OFT morphogenesis by regulating the segregation and deployment of progenitor cells in the posterior SHF. Our results provide new insights into the pathogenesis of congenital heart defects and 22q11.2 deletion syndrome phenotypes.


Assuntos
Movimento Celular , Vasos Coronários/metabolismo , Síndrome de DiGeorge/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Células-Tronco/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Vasos Coronários/embriologia , Vasos Coronários/patologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Idade Gestacional , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Miocárdio/patologia , Fenótipo , Transdução de Sinais , Células-Tronco/patologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
3.
Toxicol Lett ; 219(2): 133-42, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23454654

RESUMO

AIM: Despite its increasing popularity, little is known about the health effects of waterpipe smoking (WPS), particularly on the cardiovascular system. To investigate the role of WPS as a risk factor for vascular disease, we evaluated its effect on endothelial cell function, which is an early event in vascular disease pathogenesis. We assessed the changes in cell viability, ROS generation, inflammatory and vasodilatory markers and in vitro angiogenesis of human aortic endothelial cells in response to waterpipe smoke condensate exposure. METHODS AND RESULTS: Mainstream waterpipe smoke condensate (WSC) was generated using a standard laboratory machine protocol. Compared to control, WSC induced cell cycle arrest, apoptosis, and oxidative stress in human primary endothelial cells. In addition, we assayed for impaired endothelium-dependent vasodilation and induced inflammation by studying the effect of WPS on the content and activity of AMPK, eNOS proteins and NF-κB p65 ser536 phosphorylation, respectively. WSC inhibited AMPK/eNOS phosphorylation and induced phosphorylation of p65. Moreover, we evaluated endothelial cells repair mechanism related properties that include migration/invasion and in vitro tube formation upon treatment with WSC. WSC reduced the motility and inhibited angiogenic potential of HAEC cells. CONCLUSIONS: WPS induced endothelial cell dysfunction as evident by exerting oxidative stress, inflammation, and impaired endothelial vasodilatory function and repair mechanisms. All together these data provide evidence for the potential contribution of WPS to endothelial dysfunction and thus to vascular disease.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Nicotiana/química , Fumaça/efeitos adversos , Fumaça/análise , Fumar , Doenças Vasculares/induzido quimicamente , Proteínas Quinases Ativadas por AMP/metabolismo , Anexina A5/metabolismo , Western Blotting , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Citometria de Fluxo , Humanos , Inflamação/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Água
4.
Toxicol Lett ; 211(3): 220-31, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22516759

RESUMO

INTRODUCTION: While waterpipe tobacco smoking has become a global phenomenon, its potential health consequences are poorly understood. In this manuscript, we report the in vitro mutagenicity of waterpipe smoke condensate (WSC), the alteration in cellular parameters of lung alveolar cells in response to WSC exposure and discuss the implication of cellular responses in the pathophysiology of chronic obstructive pulmonary disease (COPD). METHODS: The mainstream WSC was generated using a standard laboratory machine protocol. We assessed its mutagenicity using Ames test. In addition, we studied the effect of WSC on the proliferation and cell cycle of alveolar type II cells and vascular endothelial cells. We also assessed the effect of WSC on the expression of genes involved in cell cycle arrest and inflammation. RESULTS: Within the range of tested doses, WSC did not elicit sufficient response to be considered mutagenic in any of the strains tested (TA98, TA100, TA102, and TA97a) but were found to be toxic for strains TA97a and TA102 at the highest tested doses. However, WSC induced cell cycle arrest and cellular senescence mediated by the p53-p21 pathway. Also our study indicated that WSC induced an increase in the transcriptional expression of matrix metalloproteinases, MMP-2 and MMP-9 and an immune response regulator, Toll Like Receptor-4. CONCLUSION: The data reported here represent the first in vitro demonstration of the effect of waterpipe smoke on cellular parameters providing evidence of the potential involvement of WPS in the pathogenesis of COPD through impairing cellular growth and inducing inflammation.


Assuntos
Mutagênicos , Nicotiana/toxicidade , Alvéolos Pulmonares/patologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Humanos , Metaloproteinases da Matriz/biossíntese , Testes de Mutagenicidade , Óxido Nítrico/análise , Alvéolos Pulmonares/citologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fumaça/efeitos adversos , Receptor 4 Toll-Like/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA