RESUMO
We have a vast knowledge on human intestinal microbiota but it can still be regarded incomplete. One of the objectives of scientists using so-called "omics" techniques is to be interested in the consequences that drugs can have on the composition of the intestinal microbiota and inversely. To date, few publications have reported the effects of drugs on the growth of bacteria composing this microbiota using a "culturomics" approach. We focused on antibiotics commonly prescribed for which the only published are the susceptibility of the pathogenic strains and not that of the commensal strains. The aim of our study was to determine the sensitivity of 30 strains considered to represent the intestinal core microbiota to 8 antibiotics and to study the possible modification of these molecules by bacteria. The 30 bacterial strains were cultured under anaerobic conditions in order to determine their sensitivity to the antibiotics. After 48 h of culture, the supernatants were also analyzed via UHPLC-MS/MS in order to determine if the antibiotics have been chemically modified. Under the current experimental conditions, cefpodoxime, metronidazole, erythromycin, sulfamethozaxole, trimethoprim and the trimethoprim/sulfamethozaxole combination have little impact on the core microbiota strain growth. On the contrary, moxifloxacin and amoxicillin inhibit the growth of numerous strains of our panel. Using UHPLC-MS/MS analyses, we have shown that some antibiotics can be modifed by the bacteria composing the intestinal core microbiome. The bacteria that make up the intestinal microbiota core are impacted by the antibiotics most commonly prescribed in clinics today and inversely.
Assuntos
Antibacterianos/farmacologia , Cromatografia Líquida/métodos , Microbioma Gastrointestinal/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Amoxicilina/farmacologia , Humanos , Programas de Rastreamento , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Sulfametoxazol/farmacologiaRESUMO
Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from diseases (such as Alzheimer's and Parkinson's diseases) to the production (e.g. inclusion bodies), stability, storage and delivery of protein drugs. ß-Cyclodextrin (ß-CD) is a circular heptasaccharide characterized by a hydrophilic exterior and a hydrophobic interior ring structure. In this research, we studied the effects of a chemically modified ß-CD (BCD07056), on the aggregating and refolding properties of BlaPChBD, a hybrid protein obtained by inserting the chitin binding domain of the human macrophage chitotriosidase into the class A ß-lactamase BlaP from Bacillus licheniformis 749/I during its thermal denaturation. The results show that BCD07056 strongly increases the refolding yield of BlaPChBD after thermal denaturation and constitutes an excellent additive to stabilize the protein over time at room temperature. Our data suggest that BCD07056 acts early in the denaturation process by preventing the formation of an intermediate which leads to an aggregated state. Finally, the role of ß-CD derivatives on the stability of proteins is discussed.
Assuntos
Quitina/química , Proteínas Recombinantes de Fusão/química , beta-Ciclodextrinas/química , beta-Lactamases/química , Estabilidade Enzimática , Desnaturação Proteica , Dobramento de ProteínaRESUMO
Altering the gut microbiota can negatively affect human health. Efforts may be sustained to predict the intended or unintended effects of molecules not naturally produced or expected to be present within the organism on the gut microbiota. Here, culture-dependent and DNA-based approaches were combined to UHPLC-MS/MS analyses in order to investigate the reciprocal interactions between a constructed Human Gut Microbiota Model (HGMM) and molecules including antibiotics, drugs, and xenobiotics. Our HGMM was composed of strains from the five phyla commonly described in human gut microbiota and belonging to Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria. Relevantly, the bacterial diversity was conserved in our constructed human gut model through subcultures. Uneven richness distribution was revealed and the sensitivity of the HGMM was mainly affected by antibiotic exposure rather than by drugs or xenobiotics. Interestingly, the constructed model and the individual cultured strains respond with the same sensitivity to the different molecules. UHPLC-MS/MS analyses revealed the disappearance of some native molecules in the supernatants of the HGMM as well as in those of the individual strains. These results suggest that biotransformation of molecules occurred in the presence of our gut microbiota model and the coupled approaches performed on the individual cultures may emphasize new bacterial strains active in these metabolic processes. From this study, the new HGMM appears as a simple, fast, stable, and inexpensive model for screening the reciprocal interactions between the intestinal microbiota and molecules of interest.
RESUMO
Sensitivity to class IIa bacteriocins from lactic acid bacteria was recently associated with the mannose phosphotransferase system (PTS) permease, in Listeria monocytogenes. To assess the involvement of this protein complex in class IIa bacteriocin activity, the mptACD operon, encoding, was heterologously expressed in an insensitive species, namely Lactococcus lactis, using the NICE double plasmid system. Upon induction of the cloned operon, the recombinant Lc. lactis became sensitive to leucocin A. Pediocin PA-1 and enterocin A also showed inhibitory activity against Lc. lactis cultures expressing mptACD. Furthermore, the role of the three genes of the mptACD operon was investigated. Derivative plasmids containing various combinations of these three genes were made from the parental mptACD plasmid by divergent PCR. The results showed that expression of mptC alone is sufficient to confer sensitivity to class IIa bacteriocins in Lc. lactis.
Assuntos
Bacteriocinas/farmacologia , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/enzimologia , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Bacteriocinas/classificação , Sequência de Bases , Mapeamento Cromossômico , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Lactococcus lactis/genética , Nisina/farmacologia , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Plasmídeos/genética , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
It was previously shown that enhanced nisin resistance in some mutants was associated with increased expression of three genes, pbp2229, hpk1021, and lmo2487, encoding a penicillin-binding protein, a histidine kinase, and a protein of unknown function, respectively. In the present work, we determined the direct role of the three genes in nisin resistance. Interruption of pbp2229 and hpk1021 eliminated the nisin resistance phenotype. Interruption of hpk1021 additionally abolished the increase in pbp2229 expression. The results indicate that this nisin resistance mechanism is caused directly by the increase in pbp2229 expression, which in turn is brought about by the increase in hpk1021 expression. We also found a degree of cross-protection between nisin and class IIa bacteriocins and investigated possible mechanisms. The expression of virulence genes in one nisin-resistant mutant and two class IIa bacteriocin-resistant mutants of the same wild-type strain was analyzed, and each mutant consistently showed either an increase or a decrease in the expression of virulence genes (prfA-regulated as well as prfA-independent genes). Although the changes mostly were moderate, the consistency indicates that a mutant-specific change in virulence may occur concomitantly with bacteriocin resistance development.
Assuntos
Genes Bacterianos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Nisina/farmacologia , Bacteriocinas/classificação , Bacteriocinas/farmacologia , Sequência de Bases , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Expressão Gênica , Listeria monocytogenes/patogenicidade , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Virulência/genéticaRESUMO
A partially annotated proteome reference map of the food pathogen Listeria monocytogenes was developed for exponentially growing cells under standardized, optimal conditions by using the sequenced strain EGDe (serotype 1/2a) as a model organism. The map was developed by using a reproducible total protein extraction and two-dimensional (2-D) polyacrylamide gel electrophoresis analysis procedure, and it contained 33 identified proteins representing the four main protein functional classes. In order to facilitate analysis of membrane proteins, a protein compartmentalization procedure was assessed. The method used provided partial fractionation of membrane and cytosolic proteins. The total protein 2-D profiles of three serotype 1/2a strains and one serotype 1/2b strain isolated from food were compared to the L. monocytogenes EGDe proteome. An average of 13% of the major protein spots in the food strain proteomes were not matched in the strain EGDe proteome. The variation was greater for the less intense spots, and on average 28% of these spots were not matched. Two of the proteins identified in L. monocytogenes EGDe were missing in one or more of the food isolates. These two proteins were proteins involved in the main glycolytic pathway and in metabolism of coenzymes and prosthetic groups. The two corresponding genes were found by PCR amplification to be present in the four food isolates. Our results show that the L. monocytogenes EGDe reference map is a valuable starting point for analyses of strains having various origins and could be useful for analyzing the proteomes of different isolates of this pathogen.
Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/classificação , Listeria monocytogenes/metabolismo , Proteoma , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biologia Computacional , Eletroforese em Gel Bidimensional/métodos , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Carne/microbiologia , Mapeamento de Peptídeos , Padrões de Referência , SorotipagemRESUMO
Class IIa bacteriocins may be used as natural food preservatives, yet resistance development in the target organisms is still poorly understood. In this study, the understanding of class IIa resistance development in Listeria monocytogenes is extended, linking the seemingly diverging results previously reported. Eight resistant mutants having a high resistance level (at least a 10(3)-fold increase in MIC), originating from five wild-type listerial strains, were independently isolated following exposure to four different class IIa bacteriocin-producing lactic acid bacteria (including pediocin PA-1 and leucocin A producers). Two of the mutants were isolated from food model systems (a saveloy-type sausage at 10 degrees C, and salmon juice at 5 degrees C). Northern blot analysis showed that the eight mutants all had increased expression of EII(Bgl) and a phospho-beta-glucosidase homologue, both originating from putative beta-glucoside-specific phosphoenolpyruvate-dependent phosphotransferase systems (PTSs). However, disruption of these genes in a resistant mutant did not confer pediocin sensitivity. Comparative two-dimensional gel analysis of proteins isolated from mutant and wild-type strains showed that one spot was consistently missing in the gels from mutant strains. This spot corresponded to the MptA subunit of the mannose-specific PTS, found only in the gels of wild-type strains. The mptACD operon was recently shown to be regulated by the sigma(54) transcription factor in conjunction with the activator ManR. Class IIa bacteriocin-resistant mutants having defined mutations in mpt or manR also exhibited the two diverging PTS expression changes. It is suggested here that high-level class IIa resistance in L. monocytogenes and at least some other Gram-positive bacteria is developed by one prevalent mechanism, irrespective of wild-type strain, class IIa bacteriocin, or the tested environmental conditions. The changes in expression of the beta-glucoside-specific and the mannose-specific PTS are both influenced by this mechanism. The current understanding of the actual cause of class IIa resistance is discussed.