Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 730, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075388

RESUMO

BACKGROUND: Gut dysbiosis has been associated with colorectal cancer (CRC), the third most prevalent cancer in the world. This study compares microbiota taxonomic and abundance results obtained by 16S rRNA gene sequencing (16S) and whole shotgun metagenomic sequencing to investigate their reliability for bacteria profiling. The experimental design included 156 human stool samples from healthy controls, advanced (high-risk) colorectal lesion patients (HRL), and CRC cases, with each sample sequenced using both 16S and shotgun methods. We thoroughly compared both sequencing technologies at the species, genus, and family annotation levels, the abundance differences in these taxa, sparsity, alpha and beta diversities, ability to train prediction models, and the similarity of the microbial signature derived from these models. RESULTS: As expected, the results showed that 16S detects only part of the gut microbiota community revealed by shotgun, although some genera were only profiled by 16S. The 16S abundance data was sparser and exhibited lower alpha diversity. In lower taxonomic ranks, shotgun and 16S highly differed, partially due to a disagreement in reference databases. When considering only shared taxa, the abundance was positively correlated between the two strategies. We also found a moderate correlation between the shotgun and 16S alpha-diversity measures, as well as their PCoAs. Regarding the machine learning models, only some of the shotgun models showed some degree of predictive power in an independent test set, but we could not demonstrate a clear superiority of one technology over the other. Microbial signatures from both sequencing techniques revealed taxa previously associated with CRC development, e.g., Parvimonas micra. CONCLUSIONS: Shotgun and 16S sequencing provide two different lenses to examine microbial communities. While we have demonstrated that they can unravel common patterns (including microbial signatures), shotgun often gives a more detailed snapshot than 16S, both in depth and breadth. Instead, 16S will tend to show only part of the picture, giving greater weight to dominant bacteria in a sample. Therefore, we recommend choosing one or another sequencing technique before launching a study. Specifically, shotgun sequencing is preferred for stool microbiome samples and in-depth analyses, while 16S is more suitable for tissue samples and studies with targeted aims.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Análise de Sequência de DNA/métodos , Masculino , Metagenoma , Feminino
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256252

RESUMO

Colorectal cancer (CRC), the third most common cancer globally, has shown links to disturbed gut microbiota. While significant efforts have been made to establish a microbial signature indicative of CRC using shotgun metagenomic sequencing, the challenge lies in validating this signature with 16S ribosomal RNA (16S) gene sequencing. The primary obstacle is reconciling the differing outputs of these two methodologies, which often lead to divergent statistical models and conclusions. In this study, we introduce an algorithm designed to bridge this gap by mapping shotgun-derived taxa to their 16S counterparts. This mapping enables us to assess the predictive performance of a shotgun-based microbiome signature using 16S data. Our results demonstrate a reduction in performance when applying the 16S-mapped taxa in the shotgun prediction model, though it retains statistical significance. This suggests that while an exact match between shotgun and 16S data may not yet be feasible, our approach provides a viable method for comparative analysis and validation in the context of CRC-associated microbiome research.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Algoritmos , Microbioma Gastrointestinal/genética , Pessoal de Saúde , Neoplasias Colorretais/genética
3.
BMC Bioinformatics ; 20(1): 410, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362714

RESUMO

BACKGROUND: Antiretroviral drugs are a very effective therapy against HIV infection. However, the high mutation rate of HIV permits the emergence of variants that can be resistant to the drug treatment. Predicting drug resistance to previously unobserved variants is therefore very important for an optimum medical treatment. In this paper, we propose the use of weighted categorical kernel functions to predict drug resistance from virus sequence data. These kernel functions are very simple to implement and are able to take into account HIV data particularities, such as allele mixtures, and to weigh the different importance of each protein residue, as it is known that not all positions contribute equally to the resistance. RESULTS: We analyzed 21 drugs of four classes: protease inhibitors (PI), integrase inhibitors (INI), nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI). We compared two categorical kernel functions, Overlap and Jaccard, against two well-known noncategorical kernel functions (Linear and RBF) and Random Forest (RF). Weighted versions of these kernels were also considered, where the weights were obtained from the RF decrease in node impurity. The Jaccard kernel was the best method, either in its weighted or unweighted form, for 20 out of the 21 drugs. CONCLUSIONS: Results show that kernels that take into account both the categorical nature of the data and the presence of mixtures consistently result in the best prediction model. The advantage of including weights depended on the protein targeted by the drug. In the case of reverse transcriptase, weights based in the relative importance of each position clearly increased the prediction performance, while the improvement in the protease was much smaller. This seems to be related to the distribution of weights, as measured by the Gini index. All methods described, together with documentation and examples, are freely available at https://bitbucket.org/elies_ramon/catkern.


Assuntos
Algoritmos , Biologia Computacional/métodos , Farmacorresistência Viral/genética , HIV-1/genética , Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Modelos Lineares , Análise de Componente Principal
4.
Front Microbiol ; 12: 609048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584612

RESUMO

The advent of next-generation sequencing technologies allowed relative quantification of microbiome communities and their spatial and temporal variation. In recent years, supervised learning (i.e., prediction of a phenotype of interest) from taxonomic abundances has become increasingly common in the microbiome field. However, a gap exists between supervised and classical unsupervised analyses, based on computing ecological dissimilarities for visualization or clustering. Despite this, both approaches face common challenges, like the compositional nature of next-generation sequencing data or the integration of the spatial and temporal dimensions. Here we propose a kernel framework to place on a common ground the unsupervised and supervised microbiome analyses, including the retrieval of microbial signatures (taxa importances). We define two compositional kernels (Aitchison-RBF and compositional linear) and discuss how to transform non-compositional beta-dissimilarity measures into kernels. Spatial data is integrated with multiple kernel learning, while longitudinal data is evaluated by specific kernels. We illustrate our framework through a single point soil dataset, a human dataset with a spatial component, and a previously unpublished longitudinal dataset concerning pig production. The proposed framework and the case studies are freely available in the kernInt package at https://github.com/elies-ramon/kernInt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA