Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6016, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045882

RESUMO

Corals are a dominant benthic fauna that occur across a vast range of depths from just below the ocean's surface to the abyssopelagic zone. However, little is known about the evolutionary mechanisms that enable them to inhabit such a wide range of environments. The mitochondrial (mt) genome, which is involved in energetic pathways, may be subject to selection pressures at greater depths to meet the metabolic demands of that environment. Here, we use a phylogenomic framework combined with codon-based models to evaluate whether mt protein-coding genes (PCGs) associated with cellular energy functions are under positive selection across depth in three groups of corals: Octocorallia, Scleractinia, and Antipatharia. The results demonstrated that mt PCGs of deep- and shallow-water species of all three groups were primarily under strong purifying selection (0.0474 < ω < 0.3123), with the exception of positive selection in atp6 (ω = 1.3263) of deep-sea antipatharians. We also found evidence for positive selection at fifteen sites across cox1, mtMutS, and nad1 in deep-sea octocorals and nad3 of deep-sea antipatharians. These results contribute to our limited understanding of mt adaptations as a function of depth and provide insight into the molecular response of corals to the extreme deep-sea environment.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Filogenia , Evolução Biológica , Adaptação Fisiológica/genética
2.
Sci Rep ; 13(1): 7443, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156831

RESUMO

Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence of nad5 introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.


Assuntos
Antozoários , Genoma Mitocondrial , Humanos , Animais , Genoma Mitocondrial/genética , Antozoários/genética , Filogenia , Evolução Molecular , Rearranjo Gênico , DNA Mitocondrial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA