Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nematol ; 55(1): 20230057, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38026548

RESUMO

Vineyards, covering over seven million hectares worldwide, hold significant socio-cultural importance. Traditionally reliant on conventional practices and agrochemicals, this agroecosystem faces environmental challenges, including soil and water pollution. Sustainable viticulture, driven by eco-friendly practices and cost reduction, has gained prominence, underlining the importance of biological control agents such as entomopathogenic nematodes (EPNs). EPNs naturally occurr in vineyard soils and play a crucial role in controlling pest damage. Ensuring compatibility between EPNs and the commonly used vineyard fungicides is critical, as these applications constitute the predominant pest-management practice during the productive grapevine cycle. This study assessed the impact of authorized grapevine fungicides on EPNs, focusing on the survival of populations and sublethal effects on their virulence. We investigated the compatibility of two EPN populations (Steinernema feltiae 107 and S. carpocapsae 'All') with three organic production-approved products (Bacillus pumilus, sulfur, and copper oxychloride) and two synthetic chemicals (Trifloxystrobin and Mancozeb). Our findings revealed that the viability of S. feltiae 107 was reduced when exposed to sulfur and copper oxychloride, and its virulence was affected by copper oxychloride and Mancozeb, although only two days after exposure and with no significant differences for larval mortality at five days. In contrast, S. carpocapsae 'All' exhibited full compatibility with all five fungicides, with no impact on its viability or virulence. Consequently, our results suggested that the evaluated fungicides could be co-applied on both EPN populations if they were employed on the same day. However, further research on multi-target interactions is needed to ensure the successful implementation of this kind of co-application.

2.
Pest Manag Sci ; 75(2): 324-332, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29885027

RESUMO

BACKGROUND: Control of Botrytis bunch rot (BBR) is currently based on the application of fungicides at four timings corresponding to specific growth stages of vines: end of flowering (A), pre-bunch closure (B), veraison (C) and before harvest (D). The current research provides a network meta-analysis of 116 studies conducted between 1963 and 2016 in nine countries, in which 14 strategies (based on combinations of 1, 2, 3, or 4 sprays applied in A, B, C, and/or D) were compared. RESULTS: When a one-spray strategy was applied, BBR control was more effective with sprays applied in A, C, or D than B. With a two-spray strategy, strategy AC provided similar control as strategy BC; strategy CD also provided good control. For a 3-spray strategy, the best disease control was consistently obtained with strategy ACD. Four-spray strategy ABCD provided the best control but often involved needless sprays so that the routine application of four sprays is not justified. CONCLUSIONS: Spraying at timing A seems to be very important for achieving efficient and flexible disease control. Flexibility is reduced by spraying at timing B rather than A. © 2018 Society of Chemical Industry.


Assuntos
Botrytis/efeitos dos fármacos , Fungicidas Industriais/administração & dosagem , Controle de Pragas/métodos , Doenças das Plantas/prevenção & controle , Vitis/microbiologia , Fazendas , Metanálise em Rede
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA