Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106308, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741513

RESUMO

Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.

2.
Neuropharmacology ; 195: 108640, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116111

RESUMO

Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.


Assuntos
Subunidades Proteicas/metabolismo , Receptores de Glutamato/metabolismo , Animais , Evolução Molecular , Ácido Glutâmico/metabolismo , Filogenia
3.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363811

RESUMO

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Assuntos
Aminoácidos Excitatórios/fisiologia , Neurotransmissores/fisiologia , Receptores de Glutamato/fisiologia , Animais , Aminoácidos Excitatórios/farmacologia , Humanos , Receptores de Glutamato/efeitos dos fármacos , Sinapses/fisiologia
4.
Open Biol ; 10(10): 200234, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33108974

RESUMO

In mammalian synapses, the function of ionotropic glutamate receptors is critically modulated by auxiliary subunits. Most of these specifically regulate the synaptic localization and electrophysiological properties of AMPA-type glutamate receptors (AMPARs). Here, we comprehensively investigated the animal evolution of the protein families that contain AMPAR auxiliary subunits (ARASs). We observed that, on average, vertebrates have four times more ARASs than other animal species. We also demonstrated that ARASs belong to four unrelated protein families: CACNG-GSG1, cornichon, shisa and Dispanin C. Our study demonstrates that, despite the ancient origin of these four protein families, the majority of ARASs emerged during vertebrate evolution by independent but convergent processes of neo/subfunctionalization that resulted in the multiple ARASs found in present vertebrate genomes. Importantly, although AMPARs appeared and diversified in the ancestor of bilateral animals, the ARAS expansion did not occur until much later, in early vertebrate evolution. We propose that the surge in ARASs and consequent increase in AMPAR functionalities, contributed to the increased complexity of vertebrate brains and cognitive functions.


Assuntos
Evolução Biológica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Vertebrados , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Genoma , Humanos , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de AMPA/química , Análise de Sequência de DNA , Vertebrados/classificação , Vertebrados/genética
5.
Sci Signal ; 12(586)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213567

RESUMO

Autosomal dominant mutations in GRIN2B are associated with severe encephalopathy, but little is known about the pathophysiological outcomes and any potential therapeutic interventions. Genetic studies have described the association between de novo mutations of genes encoding the subunits of the N-methyl-d-aspartate receptor (NMDAR) and severe neurological conditions. Here, we evaluated a missense mutation in GRIN2B, causing a proline-to-threonine switch (P553T) in the GluN2B subunit of NMDAR, which was found in a 5-year-old patient with Rett-like syndrome with severe encephalopathy. Structural molecular modeling predicted a reduced pore size of the mutant GluN2B-containing NMDARs. Electrophysiological recordings in a HEK-293T cell line expressing the mutated subunit confirmed this prediction and showed an associated reduced glutamate affinity. Moreover, GluN2B(P553T)-expressing primary murine hippocampal neurons showed decreased spine density, concomitant with reduced NMDA-evoked currents and impaired NMDAR-dependent insertion of the AMPA receptor subunit GluA1 at stimulated synapses. Furthermore, the naturally occurring coagonist d-serine restored function to GluN2B(P553T)-containing NMDARs. l-Serine dietary supplementation of the patient was hence initiated, resulting in the increased abundance of d-serine in the plasma and brain. The patient has shown notable improvements in motor and cognitive performance and communication after 11 and 17 months of l-serine dietary supplementation. Our data suggest that l-serine supplementation might ameliorate GRIN2B-related severe encephalopathy and other neurological conditions caused by glutamatergic signaling deficiency.


Assuntos
Encefalopatias , Suplementos Nutricionais , Mutação com Perda de Função , Receptores de N-Metil-D-Aspartato , Síndrome de Rett , Serina , Animais , Encefalopatias/tratamento farmacológico , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Criança , Cognição/efeitos dos fármacos , Humanos , Masculino , Camundongos , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Serina/administração & dosagem , Serina/farmacocinética
6.
Front Immunol ; 9: 2525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450099

RESUMO

Toll-like receptors (TLRs) are important for raising innate immune responses in both invertebrates and vertebrates. Amphioxus belongs to an ancient chordate lineage which shares key features with vertebrates. The genomic research on TLR genes in Branchiostoma floridae and Branchiostoma belcheri reveals the expansion of TLRs in amphioxus. However, the repertoire of TLRs in Branchiostoma lanceolatum has not been studied and the functionality of amphioxus TLRs has not been reported. We have identified from transcriptomic data 30 new putative TLRs in B. lanceolatum and all of them are transcribed in adult amphioxus. Phylogenetic analysis showed that the repertoire of TLRs consists of both non-vertebrate and vertebrate-like TLRs. It also indicated a lineage-specific expansion in orthologous clusters of the vertebrate TLR11 family. We did not detect any representatives of the vertebrate TLR1, TLR3, TLR4, TLR5 and TLR7 families. To gain insight into these TLRs, we studied in depth a particular TLR highly similar to a B. belcheri gene annotated as bbtTLR1. The phylogenetic analysis of this novel BlTLR showed that it clusters with the vertebrate TLR11 family and it might be more related to TLR13 subfamily according to similar domain architecture. Transient and stable expression in HEK293 cells showed that the BlTLR localizes on the plasma membrane, but it did not respond to the most common mammalian TLR ligands. However, when the ectodomain of BlTLR is fused to the TIR domain of human TLR2, the chimeric protein could indeed induce NF-κB transactivation in response to the viral ligand Poly I:C, also indicating that in amphioxus, specific accessory proteins are needed for downstream activation. Based on the phylogenetic, subcellular localization and functional analysis, we propose that the novel BlTLR might be classified as an antiviral receptor sharing at least partly the functions performed by vertebrate TLR22. TLR22 is thought to be viral teleost-specific TLR but here we demonstrate that teleosts and amphioxus TLR22-like probably shared a common ancestor. Additional functional studies with other lancelet TLR genes will enrich our understanding of the immune response in amphioxus and will provide a unique perspective on the evolution of the immune system.


Assuntos
Anfioxos/genética , RNA de Cadeia Dupla/genética , Receptores Toll-Like/genética , Animais , Linhagem Celular , Membrana Celular/genética , Genoma/genética , Genômica/métodos , Células HEK293 , Humanos , Imunidade Inata/genética , Mamíferos/genética , NF-kappa B/genética , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie , Ativação Transcricional/genética , Transcriptoma/genética
7.
Elife ; 72018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30465522

RESUMO

Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.


Assuntos
Evolução Molecular , Variação Genética , Receptores Ionotrópicos de Glutamato/genética , Receptores de Glutamato Metabotrópico/genética , Sequência de Aminoácidos , Animais , Teorema de Bayes , Sítios de Ligação/genética , Células HEK293 , Humanos , Modelos Moleculares , Filogenia , Domínios Proteicos , Receptores Ionotrópicos de Glutamato/química , Receptores Ionotrópicos de Glutamato/classificação , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/classificação , Homologia de Sequência de Aminoácidos
8.
Biol Psychiatry ; 83(2): 160-172, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28734458

RESUMO

BACKGROUND: N-Methyl-D-aspartate receptors (NMDARs) play pivotal roles in synaptic development, plasticity, neural survival, and cognition. Despite recent reports describing the genetic association between de novo mutations of NMDAR subunits and severe psychiatric diseases, little is known about their pathogenic mechanisms and potential therapeutic interventions. Here we report a case study of a 4-year-old Rett-like patient with severe encephalopathy carrying a missense de novo mutation in GRIN2B(p.P553T) coding for the GluN2B subunit of NMDAR. METHODS: We generated a dynamic molecular model of mutant GluN2B-containing NMDARs. We expressed the mutation in cell lines and primary cultures, and we evaluated the putative morphological, electrophysiological, and synaptic plasticity alterations. Finally, we evaluated D-serine administration as a therapeutic strategy and translated it to the clinical practice. RESULTS: Structural molecular modeling predicted a reduced pore size of mutant NMDARs. Electrophysiological recordings confirmed this prediction and also showed gating alterations, a reduced glutamate affinity associated with a strong decrease of NMDA-evoked currents. Moreover, GluN2B(P553T)-expressing neurons showed decreased spine density, concomitant with reduced NMDA-evoked currents and impaired NMDAR-dependent insertion of GluA1 at stimulated synapses. Notably, the naturally occurring coagonist D-serine was able to attenuate hypofunction of GluN2B(p.P553T)-containing NMDARs. Hence, D-serine dietary supplementation was initiated. Importantly, the patient has shown remarkable motor, cognitive, and communication improvements after 17 months of D-serine dietary supplementation. CONCLUSIONS: Our data suggest that hypofunctional NMDARs containing GluN2B(p.P553T) can contribute to Rett-like encephalopathy and that their potentiation by D-serine treatment may underlie the associated clinical improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA