Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 60(6): 1374-1385, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847493

RESUMO

Two mutants sensitive to high light for growth and impaired in NDH-1 activity were isolated from a transposon-tagged library of Synechocystis sp. strain PCC 6803. Both mutants were tagged in the ssl3451 gene encoding a hypothetical protein, which shares a significant homology with the Arabidopsis (Arabidopsis thaliana) CHLORORESPIRATORY REDUCTION 42 (CRR42). In Arabidopsis, CRR42 associates only with an NDH-1 hydrophilic arm assembly intermediate (NAI) of about 400 kDa (NAI400), one of total three NAIs (NAI800, NAI500 and NAI400), and its deletion has little, if any, effect on accumulation of any NAIs in the stroma. In comparison, the ssl3451 product was localized mainly in the cytoplasm and associates with two NAIs of about 300 kDa (NAI300) and 130 kDa (NAI130). Deletion of Ssl3451 reduced the abundance of the NAI300 complex to levels no longer visible on gels and of the NAI130 complex to a low level, thereby impeding the assembly process of NDH-1 hydrophilic arm. Further, Ssl3451 interacts with another assembly factor Ssl3829 and they have a similar effect on accumulation of NAIs and NdhI maturation factor Slr1097 in the cytoplasm. We thus propose that Ssl3451 plays an important role in accumulation of the NAI300 and NAI130 complexes in the cytoplasm via its interacting protein Ssl3829.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/metabolismo , Citoplasma/metabolismo , Tilacoides/metabolismo
2.
Plant Physiol ; 172(3): 1451-1464, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27621424

RESUMO

Two mutants isolated from a tagging library of Synechocystis sp. strain PCC 6803 were sensitive to high light and had a tag in sll1471 encoding CpcG2, a linker protein for photosystem I (PSI)-specific antenna. Both mutants demonstrated strongly impaired NDH-1-dependent cyclic electron transport. Blue native-polyacrylamide gel electrophoresis followed by immunoblotting and mass spectrometry analyses of the wild type and a mutant containing CpcG2 fused with yellow fluorescent protein-histidine6 indicated the presence of a novel NDH-1L-CpcG2-PSI supercomplex, which was absent in the cpcG2 deletion mutant, the PSI-less mutant, and several other strains deficient in NDH-1L and/or NDH-1M. Coimmunoprecipitation and pull-down analyses on CpcG2-yellow fluorescent protein-histidine6, using antibody against green fluorescent protein and nickel column chromatography, confirmed the association of CpcG2 with the supercomplex. Conversely, the use of antibodies against NdhH or NdhK after blue native-polyacrylamide gel electrophoresis and in coimmunoprecipitation experiments verified the necessity of CpcG2 in stabilizing the supercomplex. Furthermore, deletion of CpcG2 destabilized NDH-1L as well as its degradation product NDH-1M and significantly decreased the number of functional PSI centers, consistent with the involvement of CpcG2 in NDH-1-dependent cyclic electron transport. The CpcG2 deletion, however, had no effect on respiration. Thus, we propose that the formation of an NDH-1L-CpcG2-PSI supercomplex in cyanobacteria facilitates PSI cyclic electron transport via NDH-1L.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/metabolismo , Synechocystis/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Transporte de Elétrons , Deleção de Genes , Modelos Biológicos , Mutação/genética , Complexo de Proteína do Fotossistema I/metabolismo , Estabilidade Proteica
3.
Commun Biol ; 6(1): 944, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714932

RESUMO

The mechanisms of acclimating to a nitrogen-fluctuating environment are necessary for the survival of aquatic cyanobacteria in their natural habitats, but our understanding is still far from complete. Here, the synthesis of phycobiliprotein is confirmed to be much earlier than that of photosystem components during recovery from nitrogen chlorosis and an unknown protein Ssr1698 is discovered to be involved in this synthetic process. The unknown protein is further identified as a c-type heme oxygenase (cHO) in tetrapyrrole biosynthetic pathway and catalyzes the opening of heme ring to form biliverdin IXα, which is required for phycobilin production and ensuing phycobiliprotein synthesis. In addition, the cHO-dependent phycobiliprotein is found to be vital for the growth of cyanobacterial cells during chlorosis and regreening through its nitrogen-storage and light-harvesting functions, respectively. Collectively, the cHO expressed preferentially during recovery from nitrogen chlorosis is identified in photosynthetic organisms and the dual function of this enzyme-dependent phycobiliprotein is proposed to be an important mechanism for acclimation of aquatic cyanobacteria to a nitrogen-fluctuating environment.


Assuntos
Anemia Hipocrômica , Cianobactérias , Humanos , Heme Oxigenase (Desciclizante) , Aclimatação , Nitrogênio , Ficobiliproteínas
4.
Front Microbiol ; 13: 956578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910652

RESUMO

Translocation of chloroplast-located genes to mitochondria or nucleus is considered to be a safety strategy that impedes mutation of photosynthetic genes and maintains their household function during evolution. The organelle translocation strategy is also developed in photosynthetic NDH-1 (pNDH-1) genes but its understanding is still far from complete. Here, we found that the mutation rate of the conserved pNDH-1 genes was gradually reduced but their selection pressure was maintained at a high level during evolution from cyanobacteria to angiosperm. By contrast, oxygenic photosynthesis-specific (OPS) pNDH-1 genes had an opposite trend, explaining the reason why they were transferred from the reactive oxygen species (ROS)-enriched chloroplast to the ROS-barren nucleus. Further, genome-wide sequence analysis supported the possibility that all conserved pNDH-1 genes lost in chloroplast genomes of Chlorophyceae and Pinaceae were transferred to the ROS-less mitochondrial genome as deduced from their truncated pNDH-1 gene fragments. Collectively, we propose that the organelle translocation strategy of pNDH-1 genes during evolution is necessary to maintain the function of the pNDH-1 complex as an important antioxidant mechanism for efficient photosynthesis.

5.
Nat Commun ; 11(1): 888, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060291

RESUMO

NDH-1 is a key component of the cyclic-electron-transfer around photosystem I (PSI CET) pathway, an important antioxidant mechanism for efficient photosynthesis. Here, we report a 3.2-Å-resolution cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus. The structure reveals three ß-carotene and fifteen lipid molecules in the membrane arm of NDH-1L. Regulatory oxygenic photosynthesis-specific (OPS) subunits NdhV, NdhS and NdhO are close to the Fd-binding site whilst NdhL is adjacent to the plastoquinone (PQ) cavity, and they play different roles in PSI CET under high-light stress. NdhV assists in the binding of Fd to NDH-1L and accelerates PSI CET in response to short-term high-light exposure. In contrast, prolonged high-light irradiation switches on the expression and assembly of the NDH-1MS complex, which likely contains no NdhO to further accelerate PSI CET and reduce ROS production. We propose that this hierarchical mechanism is necessary for the survival of cyanobacteria in an aerobic environment.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/química , Cianobactérias/genética , Transporte de Elétrons , Ferredoxinas/química , Ferredoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Thermosynechococcus
6.
Front Plant Sci ; 9: 1532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429859

RESUMO

NaHSO3 addition greatly increases the yield of H2 photoproduction in a unicellular green alga Chlamydomonas reinhardtii through removing O2 and activating hydrogenase but significantly impairs the activity of PSII, an electron source for H2 photoproduction. Here, a stepwise addition mode of total 13 mM NaHSO3, an optimal concentration for H2 photoproduction of C. reinhardtii identified in a previous one step addition method, significantly improved H2 photoproduction. Such improvement was believed to be the result of increased residual PSII activity in an anaerobic background, but was at least independent of two alternative electron sinks for H2 photoproduction, cyclic electron transport around PSI and CO2 assimilation. Based on the above results, we propose that increased residual PSII activity in an anaerobic environment is an efficient strategy to enhance H2 photoproduction in C. reinhardtii, and the stepwise NaHSO3 addition mode is a case study in the strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA