Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(6): 1192-1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639466

RESUMO

The mountains of Southwest China comprise a significant large mountain range and biodiversity hotspot imperiled by global climate change. The high species diversity in this mountain system has long been attributed to a complex set of factors, and recent large-scale macroevolutionary investigations have placed a broad timeline on plant diversification that stretches from 10 million years ago (Mya) to the present. Despite our increasing understanding of the temporal mode of speciation, finer-scale population-level investigations are lacking to better refine these temporal trends and illuminate the abiotic and biotic influences of cryptic speciation. This is largely due to the dearth of organismal sampling among closely related species and populations, spanning the incredible size and topological heterogeneity of this region. Our study dives into these evolutionary dynamics of speciation using genomic and eco-morphological data of Stellera chamaejasme L. We identified four previously unrecognized cryptic species having indistinct morphological traits and large metapopulation of evolving lineages, suggesting a more recent diversification (~2.67-0.90 Mya), largely influenced by Pleistocene glaciation and biotic factors. These factors likely influenced allopatric speciation and advocated cyclical warming-cooling episodes along elevational gradients during the Pleistocene. The study refines the evolutionary timeline to be much younger than previously implicated and raises the concern that projected future warming may influence the alpine species diversity, necessitating increased conservation efforts.


Assuntos
Biodiversidade , Especiação Genética , Thymelaeaceae , Thymelaeaceae/genética , Filogenia , Camada de Gelo
2.
Front Plant Sci ; 13: 925296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275548

RESUMO

Alpine plants' distribution is being pushed higher towards mountaintops due to global warming, finally diminishing their range and thereby increasing the risk of extinction. Plants with specialized 'glasshouse' structures have adapted well to harsh alpine environments, notably to the extremely low temperatures, which makes them vulnerable to global warming. However, their response to global warming is quite unexplored. Therefore, by compiling occurrences and several environmental strata, we utilized multiple ensemble species distribution modeling (eSDM) to estimate the historical, present-day, and future distribution of two alpine 'glasshouse' species Rheum nobile Hook. f. & Thomson and R. alexandrae Batalin. Rheum nobile was predicted to extend its distribution from the Eastern Himalaya (EH) to the Hengduan Mountains (HM), whereas R. alexandrae was restricted exclusively in the HM. Both species witnessed a northward expansion of suitable habitats followed by a southerly retreat in the HM region. Our findings reveal that both species have a considerable range shift under different climate change scenarios, mainly triggered by precipitation rather than temperature. The model predicted northward and upward migration for both species since the last glacial period which is mainly due to expected future climate change scenarios. Further, the observed niche overlap between the two species presented that they are more divergent depending on their habitat, except for certain regions in the HM. However, relocating appropriate habitats to the north and high elevation may not ensure the species' survival, as it needs to adapt to the extreme climatic circumstances in alpine habitats. Therefore, we advocate for more conservation efforts in these biodiversity hotspots.

3.
Plant Divers ; 43(1): 1-14, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33778220

RESUMO

The complex orogeny of the Himalaya and the Qinghai-Tibet Plateau (QTP) fosters habitat fragmentation that drives morphological differentiation of mountain plant species. Consequently, determining phylogenetic relationships between plant subgenera using morphological characters is unreliable. Therefore, we used both molecular phylogeny and historical biogeographic analysis to infer the ancestral states of several vegetative and reproductive characters of the montane genus Incarvillea. We determined the taxonomic position of the genus Incarvillea within its family and inferred the biogeographical origin of taxa through Bayesian inference (BI), maximum likelihood (ML) and maximum parsimony (MP) analyses using three molecular data sets (trnL-trnF sequences, nr ITS sequences, and a data set of combined sequences) derived from 81% of the total species of the genus Incarvillea. Within the genus-level phylogenetic framework, we examined the character evolution of 10 key morphological characters, and inferred the ancestral area and biogeographical history of the genus. Our analyses revealed that the genus Incarvillea is monophyletic and originated in Central Asia during mid-Oligocene ca. 29.42 Ma. The earliest diverging lineages were subsequently split into the Western Himalaya and Sino-Himalaya during the early Miocene ca. 21.12 Ma. These lineages resulted in five re-circumscribed subgenera (Amphicome, Olgaea, Niedzwedzkia, Incarvillea, and Pteroscleris). Moreover, character mapping revealed the ancestral character states of the genus Incarvillea (e.g., suffruticose habit, cylindrical capsule shape, subligneous capsule texture, absence of capsule wing, and loculicidal capsule dehiscence) that are retained at the earliest diverging ancestral nodes across the genus. Our phylogenetic tree of the genus Incarvillea differs from previously proposed phylogenies, thereby recommending the placement of the subgenus Niedzwedzkia close to the subgenus Incarvillea and maintaining two main divergent lineages.

4.
PhytoKeys ; 176: 55-66, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958939

RESUMO

A new species Saussurea talungensis S.K.Ghimire & H.K.Rana, sp. nov. (sect. Strictae), from Talung valley of Humla district, Nepal, is described and illustrated. Morphologically, this species resembles Saussurea roylei and Saussurea lanata in habit, though it can be distinguished in having longer leaf petioles, purplish leaf margin, 1 or 3 capitula, shorter phyllaries, shorter receptacle bristles and the same anthers, comparatively shorter corolla with shorter lobes. Phylogenomic analysis also supports S. talungensis as a distinct species of Saussurea. Here, we provide taxonomic note, distribution map and phylogenomic inference to distinguish the new species and its allied members.

5.
Front Plant Sci ; 10: 1721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32076425

RESUMO

The genetic architecture within a species in the Himalaya-Hengduan Mountains (HHM) region was considered as the consolidated consequence of historical orogenesis and climatic oscillations. The visualization of dispersal corridors as the function of population genetic connectivity became crucial to elucidate the spatiotemporal dynamics of organisms. However, geodiversity and physical barriers created by paleo geo-climatic events acted vigorously to impact notable alterations in the phylogeographic pattern and dispersal corridors. Therefore, to achieve detailed phylogeography, locate dispersal corridors and estimate genetic connectivity, we integrated phylogeography with species distribution modelling and least cost path of Mirabilis himalaica (Edgew.) Heimerl in the HHM. We amplified four cpDNA regions (petL-psbE, rps16-trnK, rps16 intron, trnS-trnG), and a low copy nuclear gene (G3pdh) from 241 individuals of 29 populations. SAMOVA, genealogical relationships, and phylogenetic analysis revealed four spatially structured phylogroups for M. himalaica with the onset of diversification in late Pliocene (c. 3.64 Ma). No recent demographic growth was supported by results of neutrality tests, mismatch distribution analysis and Bayesian skyline plot. Paleo-distribution modelling revealed the range dynamics of M. himalaica to be highly sensitive to geo-climatic change with limited long-distance dispersal ability and potential evolutionary adaptation. Furthermore, river drainage systems, valleys and mountain gorges were identified as the corridors for population genetic connectivity among the populations. It is concluded that recent intense mountain uplift and subsequent climatic alterations including monsoonal changes since Pliocene or early Pleistocene formulated fragmented habitats and diverse ecology that governed the habitat connectivity, evolutionary and demographic history of M. himalaica. The integrative genetic and geospatial method would bring new implications for the evolutionary process and conservation priority of HHM endemic species.

6.
Plant Divers ; 40(1): 1-18, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30159536

RESUMO

Himalayan alder species are proven to be very useful in traditional as well as contemporary agroforestry practice. These nitrogen-fixing trees are also useful in the land restoration. Therefore, understanding the distribution of Himalayan alder and the potential zone for plantation is meaningful in the agroforestry sector. Suitable climatic zones of Alnus spp. were modelled in MaxEnt software using a subset of least correlated bioclimatic variables for current conditions (1950-2000), topographic variables (DEM derived) and Landuse Landcover (LULC) data. We generated several models and selected the best model against random models using ANOVA and t-test. The environmental variables that best explained the current distribution of the species were identified and used to project into the future. For future projections, ensemble scenarios of climate change projection derived from the results of 19 Earth System Models (ESM) were used. Our model revealed that the most favorable conditions for Alnus nepalensis are in central Nepal in the moist north-west facing slope, whereas for Alnus nitida they are in western Nepal. The major climatic factor that contributes to Alnus species distribution in Nepal appears to be precipitation during the warmest quarter for A. nepalensis and precipitation during the driest quarter for A. nitida. Future projections revealed changes in the probability distribution of these species, as well as where they need conservation and where they can be planted. Also, our model predicts that the distribution of Alnus spp. in hilly regions will remain unchanged, and therefore may represent sites that can be used to revitalize traditional agroforestry systems and extract source material for land restoration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA