Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(21): 10350-10365, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38739006

RESUMO

Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.


Assuntos
Proliferação de Células , Ceramidas , Docetaxel , Micelas , Neovascularização Patológica , Animais , Ceramidas/química , Ceramidas/farmacologia , Humanos , Camundongos , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Docetaxel/química , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ácido Litocólico/química , Ácido Litocólico/farmacologia , Polietilenoglicóis/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Estilbenos/química , Estilbenos/farmacologia , Células HCT116 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Angiogênese
2.
J Control Release ; 368: 548-565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462044

RESUMO

Cancer treatment is challenged due to immunosuppressive inflammatory tumour microenvironment (TME) caused by infiltration of tumour-promoting and inhibition of tumour-inhibiting immune cells. Here, we report the engineering of chimeric nanomicelles (NMs) targeting the cell proliferation using docetaxel (DTX) and inflammation using dexamethasone (DEX) that alters the immunosuppressive TME. We show that a combination of phospholipid-DTX conjugate and PEGylated-lipid-DEX conjugate can self-assemble to form sub-100 nm chimeric NMs (DTX-DEX NMs). Anti-cancer activities against syngeneic and xenograft mouse models showed that the DTX-DEX NMs are more effective in tumour regression, enhance the survival of mice over other treatment modes, and alter the tumour stroma. DTX-DEX NMs cause a significant reduction in myeloid-derived suppressor cells, alter the polarization of macrophages, and enhance the accumulation of cytotoxic CD4+ and CD8+ T cells in tumour tissues, along with alterations in cytokine expression. We further demonstrated that these DTX-DEX NMs inhibit the synthesis of prostaglandins, especially PGE2, by targeting the cyclooxygenase 2 that is partly responsible for immunosuppressive TME. Therefore, this study presents, for the first time, the engineering of lithocholic acid-derived chimeric NMs that affect the prostaglandin pathway, alter the TME, and mitigate tumour progression with enhanced mice survival.


Assuntos
Antineoplásicos , Prostaglandinas , Humanos , Camundongos , Animais , Prostaglandinas/farmacologia , Linfócitos T CD8-Positivos , Docetaxel/uso terapêutico , Docetaxel/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Imunossupressão , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Sci Adv ; 9(26): eadf2746, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390205

RESUMO

Treatment of triple-negative breast cancer (TNBC) is challenging because of its "COLD" tumor immunosuppressive microenvironment (TIME). Here, we present a hydrogel-mediated localized delivery of a combination of docetaxel (DTX) and carboplatin (CPT) (called DTX-CPT-Gel therapy) that ensured enhanced anticancer effect and tumor regression on multiple murine syngeneic and xenograft tumor models. DTX-CPT-Gel therapy modulated the TIME by an increase of antitumorigenic M1 macrophages, attenuation of myeloid-derived suppressor cells, and increase of granzyme B+CD8+ T cells. DTX-CPT-Gel therapy elevated ceramide levels in tumor tissues that activated the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-mediated unfolded protein response (UPR). This UPR-mediated activation of apoptotic cell death led to release of damage-associated molecular patterns, thereby activating the immunogenic cell death that could even clear the metastatic tumors. This study provides a promising hydrogel-mediated platform for DTX-CPT therapy that induces tumor regression and effective immune modulation and, therefore, can be explored further for treatment of TNBC.


Assuntos
Hidrogéis , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Morte Celular Imunogênica , Linfócitos T CD8-Positivos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ceramidas , Modelos Animais de Doenças , Imunossupressores , Resposta a Proteínas não Dobradas , Microambiente Tumoral
4.
Biomater Sci ; 10(14): 3856-3877, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35678619

RESUMO

Biomedical device or implant-associated infections caused by pathogenic bacteria are a major clinical issue, and their prevention and/or treatment remains a challenging task. Infection-resistant antimicrobial coatings with impressive cytocompatibility offer a step towards addressing this problem. Herein, we report a new strategy for constructing highly antibacterial as well as cytocompatible mixed polymer brushes onto the surface of 3D printed scaffold made of biodegradable tartaric acid-based aliphatic polyester blends. The mixed brushes were nothing but a combination of poly(3-dimethyl-(methacryloyloxyethyl) ammonium propane sulfonate) (polyDMAPS) and poly((oligo ethylene glycol) methyl ether methacrylate) (polyPEGMA) with varying chain length (n) of the ethylene glycol unit (n = 1, 6, 11, and 21). Both homo and copolymeric brushes of polyDMAPS with polyPEGMA exhibited antibacterial efficacy against both Gram positive and Gram negative pathogens such as E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus) because of the combined action of bacteriostatic effects originating from strongly hydrated layers present in zwitterionic (polyDMAPS) and hydrophilic (polyPEGMA) copolymer brushes. Interestingly, a mixed polymer brush comprising polyDMAPS and polyPEGMA (ethylene glycol chain unit of 21) at 50/50 ratio provided zero bacterial growth and almost 100% cytocompatibility (tested using L929 mouse fibroblast cells), making the brush-modified biodegradable substrate an excellent choice for an infection-resistant and cytocompatible surface. An attempt was made to understand their extraordinary performance with the help of contact angle, surface charge analysis and nanoindentation study, which revealed the formation of a hydrophilic, almost neutral, very soft surface (99.99% reduction in hardness and modulus) after modification with the mixed brushes. This may completely suppress bacterial adhesion. Animal studies demonstrated that these brush-modified scaffolds are biocompatible and can mitigate wound infections. Overall, this study shows that the fascinating combination of an infection-resistant and cytocompatible surface can be generated on biodegradable polymeric surfaces by modulating the surface hardness, flexibility and hydrophilicity by selecting appropriate functionality of the copolymeric brushes grafted onto them, making them ideal non-leaching, anti-infective, hemocompatible and cytocompatible coatings for biodegradable implants.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Etilenoglicóis , Camundongos , Polímeros/química , Staphylococcus aureus , Propriedades de Superfície
5.
Biomater Sci ; 10(16): 4667, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852406

RESUMO

Correction for 'Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections' by Shaifali Dhingra et al., Biomater. Sci., 2022, 10, 3856-3877, https://doi.org/10.1039/d2bm00245k.

6.
Nanoscale ; 14(39): 14717-14731, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36169577

RESUMO

Proinflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α) are critical mediators of inflammatory bowel disease pathogenesis, and are important targets to restore intestinal homeostasis. Herein, we present the engineering and screening of gemini lipid nanoparticles (GLNPs) for siRNA delivery to colon epithelial cells, macrophages and dendritic cells, and their ability to deliver siRNA therapeutics to the inflamed gastrointestinal tract. We synthesized eight gemini cationic lipids by tethering two lithocholic acid molecules through 3'-hydroxyl- and 24'-carboxyl-derived ammonium groups using different polyalkylene spacers. Screening of GLNPs, composed of gemini cationic lipid and dioleoylphosphatidylethanolamine lipid, showed that GLNPs derived from gemini lipid G1 are the most effective in the delivery of siRNA across mammalian cell membranes with reduced toxicity. Gemini lipid G1-derived siRNA-GLNP complexes (siGLNPs) can effectively reduce gene expression, and are stable in simulated gastric fluid. The delivery of TNF-α siRNA using siGLNPs can mitigate gut inflammation in a dextran sodium sulfate-induced murine inflammation model. As CD4+ T cells, especially Th17 cells, are key mediators of gut inflammation, we further showed that these siGLNPs inhibit infiltration and differentiation of CD4+ T cells to Th17 and Treg cells. Therefore, this study highlights the potential of GLNPs derived from lithocholic acid-derived gemini cationic lipids for the development of next-generation nucleic acid delivery vehicles.


Assuntos
Compostos de Amônio , Fator de Necrose Tumoral alfa , Animais , Linfócitos T CD4-Positivos , Cátions , Citocinas , Dextranos , Inflamação , Lipídeos , Lipossomos , Ácido Litocólico , Mamíferos/genética , Camundongos , Nanopartículas , RNA Interferente Pequeno
7.
Nanoscale ; 14(10): 3834-3848, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35195120

RESUMO

Psoriasis is a systemic, relapsing, and chronic autoimmune inflammatory disease of the skin. Topical use of betamethasone, a glucocorticoid, in the form of creams is a common treatment for psoriasis. However, topical use of these creams is challenging due to the ineffective entrapment of steroids, burst release of the entrapped drugs, poor skin permeability, and high toxicity. Herein, we present the engineering of a betamethasone-loaded topical hydrogel (B-Gel) that can efficiently entrap steroids with high spreadability, and can also maintain the sustained release of drugs. We used an imiquimod (IMQ) induced ear psoriasis model, and demonstrated that topical application of B-Gel can mitigate the autoimmune inflammation reactions, and leads to a reduction in erythema, induration, scaling, and ear thickness. As interleukin 17 (IL-17) secreting T helper 17 (Th17) cells and γδ+ T cells are responsible for psoriasis, B-Gel treatment witnessed a reduction in the infiltration of leukocytes, CD4+ T cells, Th17 T cells, and dermal γδ+ T cells. We further demonstrated that B-Gel mediated reduction of IL-1ß, IL-17, and K16 (marker for keratinocyte proliferation) is responsible for alleviation of psoriasis. Therefore, the non-greasy nature of the hydrogel with a cooling effect provides an alternative for topical application of steroids.


Assuntos
Hidrogéis , Psoríase , Animais , Autoimunidade , Modelos Animais de Doenças , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/tratamento farmacológico , Pele , Esteroides
8.
J Med Chem ; 65(22): 15312-15326, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331380

RESUMO

Emergence of vancomycin resistance in Gram-positive bacteria and the prevalence of vancomycin-resistant Enterococci (VRE) infections are highly alarming as very limited antibiotic options are available against VRE infections. Here, we present the synthesis of cholic acid-derived dimeric amphiphiles where two cholic acid moieties are tethered through carboxyl terminals using different alkylene spacers. Our investigations revealed that dimer 5 possessing a propylene spacer and glycine-valine peptides tethered on hydroxyl groups is the most effective antimicrobial against VRE. Dimer 5 can permeabilize bacterial membranes, generate reactive oxygen species, and clear preformed biofilms. We further demonstrate that dimer 5 downregulates vancomycin-mediated transcriptional activation of the vanHAX gene cluster and does not allow VSE to develop vancomycin resistance until 100 generations. Therefore, this study, for the first time, presents a bacterial membrane-targeting amphiphile that can mitigate VRE infections and inhibit the emergence of vancomycin resistance.


Assuntos
Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Cólico/farmacologia , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Óperon , Vancomicina/farmacologia , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Farmacorresistência Bacteriana/genética
9.
ACS Appl Mater Interfaces ; 13(37): 44041-44053, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491724

RESUMO

Treatment of chronic wound infections caused by Gram-positive bacteria such as Staphylococcus aureus is highly challenging due to the low efficacy of existing formulations, thereby leading to drug resistance. Herein, we present the synthesis of a nonimmunogenic cholic acid-glycine-glycine conjugate (A6) that self-assembles into a supramolecular viscoelastic hydrogel (A6 gel) suitable for topical applications. The A6 hydrogel can entrap different antibiotics with high efficacy without compromising its viscoelastic behavior. Activities against different bacterial species using a disc diffusion assay demonstrated the antimicrobial effect of the ciprofloxacin-loaded A6 hydrogel (CPF-Gel). Immune profiling and gene expression studies after the application of the A6 gel to mice confirmed its nonimmunogenic nature to host tissues. We further demonstrated that topical application of CPF-Gel clears S. aureus-mediated wound infections more effectively than clinically used formulations. Therefore, cholic acid-derived hydrogels are an efficacious matrix for topical delivery of antibiotics and should be explored further.


Assuntos
Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/química , Hidrogéis/química , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Ácidos Cólicos/síntese química , Ácidos Cólicos/química , Ciprofloxacina/química , Dipeptídeos/síntese química , Dipeptídeos/química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Hidrogéis/síntese química , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Staphylococcus aureus/efeitos dos fármacos
10.
Nanoscale ; 13(31): 13225-13230, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477730

RESUMO

We present a non-immunogenic, injectable, low molecular weight, amphiphilic hydrogel-based drug delivery system (TB-Gel) that can entrap a cocktail of four front-line antitubercular drugs, isoniazid, rifampicin, pyrazinamide, and ethambutol. We showed that TB-Gel is more effective than oral delivery of the combination of four drugs in reducing the mycobacterial infection in mice. Results show that half the dose of chemotherapeutic drugs is sufficient to achieve a comparable therapeutic effect to that of oral delivery.


Assuntos
Antituberculosos , Hidrogéis , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etambutol , Isoniazida , Camundongos , Pirazinamida
11.
Nanoscale ; 12(35): 18463-18475, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32941570

RESUMO

The release of anticancer drugs in systemic circulation and their associated toxicity are responsible for the poor efficacy of chemotherapy. Therefore, the identification of new chemotherapeutic combinations designed to be released near the tumor site in a sustained manner has the potential to enhance the efficacy and reduce the toxicity associated with chemotherapy. Here, we present the identification of a combination of doxorubicin, a DNA-binding topoisomerase inhibitor, with a naturally occurring triterpenoid, celastrol, that induces a synergistic effect on the apoptosis of colon cancer cells. Hydrogel-mediated sustained release of a combination of doxorubicin and celastrol in a murine tumor model abrogates tumor proliferation, and increases the median survival with enhanced apoptosis and concurrent reduction in proliferation. Sphingolipid profiling (LC-MS/MS) of treated tumors showed that the combination of celastrol and doxorubicin induces global changes in the expression of sphingolipids with an increase in levels of ceramides. We further demonstrate that this dual drug combination induces a significant increase in the expression of ceramide synthase 1, 4, and 6, thereby increasing the level of ceramides that contribute to the synergistic apoptotic effect. Therefore, hydrogel-mediated localized delivery of a combination of celastrol and doxorubicin provides a new therapeutic combination that induces a sphingolipid-mediated synergistic effect against colon cancer.


Assuntos
Neoplasias , Triterpenos , Animais , Ceramidas , Cromatografia Líquida , Doxorrubicina/farmacologia , Hidrogéis , Camundongos , Triterpenos Pentacíclicos , Espectrometria de Massas em Tandem , Triterpenos/farmacologia , Regulação para Cima
12.
RSC Adv ; 9(24): 13444-13457, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35519566

RESUMO

In the present study, magnetically separable hydrogel beads of ionically cross-linked alginate were functionalized with polydopamine (PDA). The rationale behind this was to enhance the structural stability and antibacterial profile of PDA/Alg/Fe3O4 beads (K3). Incorporation of superparamagnetic magnetite (Fe3O4) nanoparticles endowed the hydrogel beads with magnetism. X-ray diffraction (XRD) analysis revealed the successful formation of pure Alg/Fe3O4 nanoparticles having an inverse spinel structure. Vibrating sample magnetometry (VSM) confirmed their superparamagnetic behaviour with M s values of 36.18 and 30.46 emu g-1 at 5 and 300 K, respectively. High resolution-transmission electron microscopy (HR-TEM) images showed alginate capping and the size of the Alg/Fe3O4 nanoparticles (∼8 nm). The successful deposition of PDA granules on the K3 bead surface was verified by field emission-scanning electron microscopy (FE-SEM). The PDA functionalization was further justified by VSM, XRD and Fourier-transform infrared spectroscopy (FT-IR). During swelling experiments, K3 beads displayed appreciable structural stability compared to bare/non-functionalized beads. Wettability studies revealed K3 beads to be hydrophilic with a contact angle of ∼55°. Rheological parameters including storage modulus (G') and shear viscosity of K3 increased upon PDA functionalization. During antibacterial tests, K3 strongly inhibited E. coli, S. typhi, S. aureus and L. monocytogenes in a concentration and time dependent manner. Fluorescence staining experiments showed that K3 could greatly alter the bacterial membrane integrity. Reusability experiments with K3 beads substantiated their effective broad-spectrum antibacterial performance for three consecutive cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA