Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 162(8): 2493-2504, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28389807

RESUMO

In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Genoma Viral , Mononegavirais/classificação , Ordem dos Genes , Mononegavirais/genética , Filogenia , Especificidade da Espécie
2.
J Virol ; 82(17): 8871-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18579584

RESUMO

Efficient herpes simplex virus type 1 (HSV-1) infection of human fibroblasts (HFs) is highly dependent on the viral immediate-early regulatory protein ICP0 unless the infection is conducted at a high multiplicity. ICP0-null mutant HSV-1 exhibits a plaque-forming defect of up to 3 orders of magnitude in HFs, whereas in many other cell types, this defect varies between 10- and 30-fold. The reasons for the high ICP0 requirement for HSV-1 infection in HFs have not been established definitively. Previous studies using other cell types suggested that ICP0-null mutant HSV-1 is hypersensitive to interferon and that this sensitivity is dependent on the cellular promyelocytic leukemia (PML) protein. To investigate the roles of two important aspects of interferon signaling in the phenotype of ICP0-null mutant HSV-1, we isolated HFs depleted of STAT-1 or interferon regulatory factor 3 (IRF-3). Surprisingly, plaque formation by the mutant virus was not improved in either cell type. We found that the sensitivity to interferon pretreatment of both ICP0-null mutant and wild-type (wt) HSV-1 was highly dependent on the multiplicity of infection. At a low multiplicity in virus yield experiments, both viruses were extremely susceptible to interferon pretreatment of HFs, but the sensitivity of the wild type but not the mutant could be overcome at higher multiplicities. We found that both wt and ICP0-null mutant HSV-1 remained sensitive to interferon in PML-depleted HFs albeit to an apparently lesser extent than in control cells. The data imply that the substantial reduction in ICP0-null HSV-1 infectivity at a low multiplicity in HFs does not occur through the activities of STAT-1- and IRF-3-dependent pathways and cannot be explained solely by enhanced sensitivity to interferon. We suggest that antiviral activities induced by interferon may be separable from and additive to those resulting from PML-related intrinsic resistance mechanisms.


Assuntos
Fibroblastos/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Fator de Transcrição STAT1/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Fibroblastos/efeitos dos fármacos , Herpesvirus Humano 1/genética , Humanos , Proteínas Imediatamente Precoces/genética , Interferons/farmacologia , Mutação , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Sensibilidade e Especificidade , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA