Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cladistics ; 36(1): 88-113, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34618970

RESUMO

Major geological processes have shaped biogeographical patterns of riverine biota. The Edwards Plateau of central Texas, USA, exhibits unique aquatic communities and endemism, including several species of freshwater mussels. Lampsilis bracteata (Gould, 1855) is endemic to the Edwards Plateau region; however, its phylogenetic relationship with other species in the Gulf coastal rivers and Mississippi River basin is unknown. We evaluated phylogenetic relationships, shell morphologies and soft anatomy characters of L. bracteata and a closely related congener, Lampsilis hydiana (Lea, 1838) throughout their ranges. Our results showed the presence of an undescribed species: Lampsilis bergmanni sp.n. Lampsilis bracteata and L. bergmanni sp.n. share similar shell morphologies and soft anatomy characters; however, they are genetically distinct. Geological processes, such as faulting and sea-level changes during the Miocene to Pliocene, are likely to have facilitated diversification of Lampsilis species, resulting in isolation of L. bracteata on the Edwards Plateau and diversification between L. bergmanni sp.n. and L. hydiana. We conclude that L. bracteata range is restricted to the Colorado River basin, whereas L. bergmanni sp.n. occurs only in upstream reaches of the Guadalupe River basin. Conservation actions are warranted for both species due to their restricted distributions and potential anthropogenic threats.

2.
Ecotoxicol Environ Saf ; 170: 1-8, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30503989

RESUMO

Unionid mussels are considered sensitive to salinity and there is growing concern in arid and semi-arid regions that declining flows coupled with anthropogenic impacts are amplifying natural salinity levels. In this study, we tested the effects of varying salinity concentrations (3.0, 4.0, 5.0, 6.0, 7.0 and 10.0 ppt NaCl) on survival of adult Popenaias popeii, (Texas Hornshell). This species occurs in the Rio Grande basin of Texas and northern Mexico, an arid to semi-arid stream plagued by salinization, and was recently listed as Endangered under the U.S. Endangered Species Act. We performed 2, 4, and 10-day toxicity tests on individuals from two disjunct populations: Laredo, TX, and the Lower Canyons of the Rio Grande near Big Bend National Park. We found no significant differences in LC50 estimates between populations at 96-hrs or 10-days but significant differences in TUD50s at 5 ppt between populations, which indicates that tolerance does not vary but sensitivity may between these populations. Overlaying LC50 estimates at 10-days for both populations on plots of salinity (ppt) measured over time, we show parts of the Rio Grande periodically approach or exceed 4.0 ppt, indicating these reaches are becoming unsuitable for P. popeii and populations within them at risk.


Assuntos
Conservação dos Recursos Naturais , Tolerância ao Sal , Unionidae/fisiologia , Purificação da Água , Animais , Água Subterrânea/química , Dose Letal Mediana , México , Texas , Testes de Toxicidade , Poluentes Químicos da Água
3.
Conserv Biol ; 32(5): 1118-1127, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29738619

RESUMO

The concept of shifting baselines in conservation science implies advocacy for the use of historical knowledge to inform these baselines but does not address the feasibility of restoring sites to those baselines. In many regions, conservation feasibility varies among sites due to differences in resource availability, statutory power, and land-owner participation. We used zooarchaeological records to identify a historical baseline of the freshwater mussel community's composition before Euro-American influence at a river-reach scale (i.e., a kilometer stretch of river that is abiotically similar) in the Leon River of central Texas (U.S.A.). We evaluated how the community reference position and the feasibility of conservation might enable identification of sites where conservation actions would preserve historically representative communities and be likely to succeed. We devised a conceptual model that incorporated community information and landscape factors to link the best conservation areas to potential cost and conservation benefits. Using fuzzy ordination, we identified modern mussel beds that were most like the historical baseline. We then quantified housing density and land use near each river reach identified to estimate feasibility of habitat restoration. Using our conceptual framework, we identified reaches of high conservation value (i.e., contain the best mussel beds) and where restoration actions would be most likely to succeed. Reaches above Lake Belton were most similar in species composition and relative abundance to zooarchaeological sites. A subset of these mussel beds occurred in locations where conservation actions appeared most feasible. Our results show how to use zooarchaeological data (biodiversity data often readily available) and estimates of conservation feasibility to inform conservation priorities at a local spatial scale.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Estudos de Viabilidade , Texas
4.
Sci Rep ; 14(1): 7653, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561458

RESUMO

Freshwater mussels preserve valuable information about hydrology, climate, and population dynamics, but developing seasonal chronologies can be problematic. Using clumped isotope thermometry, we produced high-resolution reconstructions of modern and historic (~ 1900) temperatures and δ18Owater from mussel shells collected from an impounded river, the Brazos in Texas, before and after damming. We also performed high-resolution growth band analyses to investigate relationships between mussel growth rate, rainfall, and seasonal temperature. Reconstructed δ18Owater and temperature vary little between the modern (3R5) and historic shell (H3R). However, a positive relationship between reconstructed δ18Owater and growth rate in H3R indicates that aside from diminished growth in winter, precipitation and flow rate are the strongest controls on mussel growth in both modern and pre-dam times. Overall, our results demonstrate (1) the impact, both positive and negative, of environmental factors such as flow alteration and temperature on mussel growth and (2) the potential for clumped isotopes in freshwater mussels as a paleohydrology and paleoclimate proxies in terrestrial environments.


Assuntos
Bivalves , Rios , Animais , Clima , Isótopos de Oxigênio/análise , Água
5.
Sci Rep ; 13(1): 4603, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944661

RESUMO

Freshwater mussels are particularly sensitive to hydrologic changes, including streamflow and temperature, resulting in global decline. The Devils River in south-central Texas harbors the endangered freshwater mussel Popenaias popeii (Unionidae; Texas hornshell). There is concern that water withdrawals from the underlying aquifer may be negatively impacting this species. To assess this risk, we evaluated upper thermal tolerances (LT05 and LT50) of larvae (glochidia) and juveniles from two sites. After being acclimated to 27 °C, glochidia were subjected to five experimental temperatures (30, 32, 34, 36, and 38 °C) and non-acclimated control (20 °C) for 12-h and 24-h while juveniles were subjected to three experimental temperatures (30, 32, and 36 °C) and non-acclimated control (20 °C) for 96-h. We overlaid tolerance estimates against in situ water temperature and discharge data to evaluate thermal exceedances. Additionally, we reviewed upper thermal tolerances of P. popeii's presumed host fish (Carpiodes carpio, Cyprinellas lutrensis, and Moxostoma congestum) and their congeners. Stream temperatures only occasionally exceeded mussel LT05/50 and fish CLMax/LTMax, likely due to the Devils River's large spring input, highlighting the importance of protecting spring flows. We provide a practical framework for assessing hydrological needs of aquatic ectotherms, including the parasite-host relationship, which can be used to optimize environmental management.


Assuntos
Bivalves , Unionidae , Animais , Peixes , Texas , Água
6.
Ecol Appl ; 22(5): 1446-59, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22908705

RESUMO

Large assemblages of animal bones and/or shells from archaeological sites can provide data valuable for modern conservation efforts, e.g., by providing accurate historical baselines for species reintroductions or habitat restoration. Such data are underused by natural scientists, partly due to assumptions that archaeological materials are too biased by prehistoric human actions (the so-called "cultural filter") to accurately reflect past biotic communities. In order to address many paleobiological, archaeological, or applied research questions, data on past species, communities, and populations must first be demonstrated to be representative at the appropriate level. We discuss different ways in which one kind of cultural bias, human transport of specimens, can be tested at different scales, using freshwater mussel shells from prehistoric sites in the Tombigbee River basin of Mississippi and Alabama to show how representativeness of samples can be assessed.


Assuntos
Exoesqueleto , Arqueologia , Bivalves/fisiologia , Atividades Humanas , Alabama , Animais , Demografia , Humanos , Mississippi , Rios
7.
Ecol Evol ; 12(5): e8909, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592061

RESUMO

Species distribution models (SDMs) are an increasingly important tool for conservation particularly for difficult-to-study locations and with understudied fauna. Our aims were to (1) use SDMs and ensemble SDMs to predict the distribution of freshwater mussels in the Pánuco River Basin in Central México; (2) determine habitat factors shaping freshwater mussel occurrence; and (3) use predicted occupancy across a range of taxa to identify freshwater mussel biodiversity hotspots to guide conservation and management. In the Pánuco River Basin, we modeled the distributions of 11 freshwater mussel species using an ensemble approach, wherein multiple SDM methodologies were combined to create a single ensemble map of predicted occupancy. A total of 621 species-specific observations at 87 sites were used to create species-specific ensembles. These predictive species ensembles were then combined to create local diversity hotspot maps. Precipitation during the warmest quarter, elevation, and mean temperature were consistently the most important discriminatory environmental variables among species, whereas land use had limited influence across all taxa. To the best of our knowledge, our study is the first freshwater mussel-focused research to use an ensemble approach to determine species distribution and predict biodiversity hotspots. Our study can be used to guide not only current conservation efforts but also prioritize areas for future conservation and study.

8.
Ecol Evol ; 11(16): 11102-11122, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429906

RESUMO

Population genomics has significantly increased our ability to make inferences about microevolutionary processes and demographic histories, which have the potential to improve protection and recovery of imperiled species. Freshwater mussels (Bivalvia: Unionida) represent one of the most imperiled groups of organisms globally. Despite systemic decline of mussel abundance and diversity, studies evaluating spatiotemporal changes in distribution, demographic histories, and ecological factors that threaten long-term persistence of imperiled species remain lacking. In this study, we use genotype-by-sequencing (GBS) and mitochondrial sequence data (mtDNA) to define conservation units (CUs) for two highly imperiled freshwater mussel species, Potamilus amphichaenus and Potamilus streckersoni. We then synthesize our molecular findings with details from field collections spanning from 1901 to 2019 to further elucidate distributional trends, contemporary status, and other factors that may be contributing to population declines for our focal species. We collected GBS and mtDNA data for individuals of P. amphichaenus and P. streckersoni from freshwater mussel collections in the Brazos, Neches, Sabine, and Trinity drainages ranging from 2012 to 2019. Molecular analyses resolved disputing number of genetic clusters within P. amphichaenus and P. streckersoni; however, we find defensible support for four CUs, each corresponding to an independent river basin. Evaluations of historical and recent occurrence data illuminated a generally increasing trend of occurrence in each of the four CUs, which were correlated with recent increases in sampling effort. Taken together, these findings suggest that P. amphichaenus and P. streckersoni are likely rare throughout their respective ranges. Because of this, the establishment of CUs will facilitate evidence-based recovery planning and ensure potential captive propagation and translocation efforts are beneficial. Our synthesis represents a case study for conservation genomic assessments in freshwater mussels and provides a model for future studies aimed at recovery planning for these highly imperiled organisms.

9.
Ecol Appl ; 20(8): 2359-68, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21265464

RESUMO

In north central Texas, USA, the zoogeography of unionids in the Trinity River is thought to consist of upland and lowland biogeographic components reflective of differences in upstream and downstream hydraulic conditions. Historical and modern surveys from a limited number of localities were used to delineate these zoogeographic provinces based on the absence of several species thought to occur only in the lower Trinity River drainage. Available zooarchaeological data indicate that at least one species considered absent from the upper Trinity River basin was present during the late Holocene (roughly the last 2500 years), suggesting that both biogeographical provinces shared similar mussel fauna in the recent geological past. The discrepancy between historical and zooarchaeological data is probably the result of inadequate sampling and of an extirpation gradient related to impoundments that have been constructed in this drainage during the last century. The presence of lower Trinity species during the late Holocene in the upper Trinity drainage challenges interpretations drawn from modern biogeographic studies.


Assuntos
Evolução Biológica , Bivalves/genética , Rios , Animais , Demografia , Texas
10.
Zootaxa ; 4816(4): zootaxa.4816.4.3, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33055684

RESUMO

The Gulf coastal drainages of central Mexico are a faunal transition zone between North and South America and harbor a unique assemblage of freshwater mussels (Bivalvia: Unionida). However, little information is available regarding the taxonomy, distribution, and evolutionary history of the Mexican mussel fauna due to limited sampling over the last 100 years. To address these knowledge gaps, we evaluated species-level diversity in the genus Popenaias Frierson, 1927, in Mexican Gulf coastal drainages as part of a larger effort to inform conservation efforts for members of this genus both in Mexico and the United States of America. Based on our analyses, we describe Popenaias berezai n. sp. from the Río Valles of the Río Pánuco basin, San Luis Potosí, Mexico. We also provide presumptive distributional range, phylogenetic structure, and molecular and morphological diagnoses of the new species and provide comments on the other species currently in Popenaias. Our findings highlight the high levels of endemism among freshwater mussels in Mexican Gulf coastal drainages and will help guide impending conservation actions for P. popeii, which is listed as "endangered" in the United States.


Assuntos
Bivalves , Unionidae , Animais , Água Doce , México , Filogenia , Rios
11.
Sci Rep ; 8(1): 15892, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367102

RESUMO

Objectively delimiting species boundaries remains an important challenge in systematics and becomes urgent when unresolved taxonomy complicates conservation and recovery efforts. We examined species boundaries in the imperiled freshwater mussel genus Cyclonaias (Bivalvia: Unionidae) using morphometrics, molecular phylogenetics, and multispecies coalescent models to help guide pending conservation assessments and legislative decisions. Congruence across multiple lines of evidence indicated that current taxonomy overestimates diversity in the C. pustulosa species complex. The only genetically and morphologically diagnosable species in the C. pustulosa species complex were C. pustulosa and C. succissa and we consider C. aurea, C. houstonensis, C. mortoni, and C. refulgens to be synonyms of C. pustulosa. In contrast, all three species in the C. nodulata complex (C. necki, C. nodulata, and C. petrina) were genetically, geographically, and morphologically diagnosable. Our findings have important conservation and management implications, as three nominal species (C. aurea, C. houstonensis, and C. petrina) are being considered for protection under the Endangered Species Act.


Assuntos
Bivalves/classificação , Animais , Bivalves/anatomia & histologia , Bivalves/genética , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Água Doce , Filogenia , Estados Unidos
12.
PLoS One ; 13(5): e0197107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768469

RESUMO

Correct identification of sex is an important component of wildlife management because changes in sex ratios can affect population viability. Identification of sex often relies on external morphology, which can be biased by intermediate or nondistinctive morphotypes and observer experience. For unionid mussels, research has demonstrated that species misidentification is common but less attention has been given to the reliability of sex identification. To evaluate whether this is an issue, we surveyed 117 researchers on their ability to correctly identify sex of Lampsilis teres (Yellow Sandshell), a wide ranging, sexually dimorphic species. Personal background information of each observer was analyzed to identify factors that may contribute to misidentification of sex. We found that median misidentification rates were ~20% across males and females and that observers falsely identified the number of female specimens more often (~23%) than males (~10%). Misidentification rates were partially explained by geographic region of prior mussel experience and where observers learned how to identify mussels, but there remained substantial variation among observers after controlling for these factors. We also used three morphometric methods (traditional, geometric, and Fourier) to investigate whether sex could be more correctly identified statistically and found that misidentification rates for the geometric and Fourier methods (which characterize shape) were less than 5% (on average 7% and 2% for females and males, respectively). Our results show that misidentification of sex is likely common for mussels if based solely on external morphology, which raises general questions, regardless of taxonomic group, about its reliability for conservation efforts.


Assuntos
Conservação dos Recursos Naturais , Análise para Determinação do Sexo , Unionidae/fisiologia , Animais , Feminino , Masculino
13.
Sci Total Environ ; 631-632: 733-744, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544177

RESUMO

Freshwater resources in arid and semi-arid regions are in extreme demand, which creates conflicts between needs of humans and aquatic ecosystems. The Rio Grande basin in the southwestern United States and northern Mexico exemplifies this issue, as much of its aquatic biodiversity is in peril as a result of human activities. Unionid mussels have been disproportionately impacted, though the specific factors responsible for their decline remain largely unknown. This is problematic because the Rio Grande basin harbors one federally endangered unionid mussel (Popenaias popeii, Texas Hornshell) plus two other mussel species (Potamilus metnecktayi, Salina Mucket; and Truncilla cognata, Mexican Fawnsfoot), which are also being considered for listing under the U.S. Endangered Species Act. To date, surveys for these species have not corrected for variability in detection so current range estimates may be inaccurate. Using single occupancy-modeling to estimate detection and occupancy at 115 sites along ~800 river kilometers of the Rio Grande in Texas, we found that detection probabilities were relatively high, indicating that our survey design was efficient. In contrast, the estimated occupancy was low, indicating that our focal species were likely rare within the Rio Grande drainage. In general, the predicted occupancy of our focal species was low throughout their respective ranges, indicating possible range declines. A comparison of currently occupied ranges to presumptive ranges underscores this point. The best-approximating models indicated that occupancy was influenced by habitat, water quantity and quality, and proximity to large-scale human activities, such as dams and major urban centers. We also discuss a series of conservation options that may not only improve the long-term prognosis of our focal species but also other aquatic taxa.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Unionidae/fisiologia , Animais , Biodiversidade , Rios/química , Texas , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA