Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 211, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358509

RESUMO

The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.


Assuntos
Agricultura , Ecossistema , Animais , Humanos , Ração Animal , Antibacterianos , Biodiversidade
2.
Phytopathology ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007764

RESUMO

Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugar beet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated to synonymous and non-synonymous mutations in CbCyp51. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of C. beticola collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole, but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five CbCyp51 haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/ L144F_C) correlated to resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in CbCyp51 expression between haplotypes. This study gives an understanding for the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.

3.
Plant J ; 108(3): 632-645, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510609

RESUMO

Fungal secondary metabolites (FSMs) are capable of manipulating plant community dynamics by inhibiting or facilitating the establishment of co-habitating organisms. Although production of FSMs is not crucial for survival of the producer, their absence can indirectly impair growth and/or niche competition of these fungi on the plant. The presence of FSMs with no obvious consequence on the fitness of the producer leaves questions regarding ecological impact. This review investigates how fungi employ FSMs as a platform to mediate fungal-fungal, fungal-bacterial and fungal-animal interactions associated with the plant community. We discuss how the biological function of FSMs may indirectly benefit the producer by altering the dynamics of surrounding organisms. We introduce several instances where FSMs influence antagonistic- or alliance-driven interactions. Part of our aim is to decipher the meaning of the FSM 'language' as it is widely noted to impact the surrounding community. Here, we highlight the contribution of FSMs to plant-associated interaction networks that affect the host either broadly or in ways that may have previously been unclear.


Assuntos
Fungos/metabolismo , Herbivoria/fisiologia , Interações Microbianas/fisiologia , Plantas/microbiologia , Polinização/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos , Fungos/química , Hypocreales/fisiologia , Fenômenos Fisiológicos Vegetais , Metabolismo Secundário
4.
Environ Microbiol ; 18(10): 3509-3521, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27130686

RESUMO

Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its capacity to suppress plant diseases and has since been shown to be lethal to certain insects. Among these is the common fruit fly Drosophila melanogaster, a well-established model organism for studies evaluating the molecular and cellular basis of the immune response to bacterial challenge. Pf-5 produces the insect toxin FitD, but a ΔfitD mutant of Pf-5 retained full toxicity against D. melanogaster in a noninvasive feeding assay, indicating that FitD is not a major determinant of Pf-5's oral toxicity against this insect. Pf-5 also produces a broad spectrum of exoenzymes and natural products with antibiotic activity, whereas a mutant with a deletion in the global regulatory gene gacA produces none of these exoproducts and also lacks toxicity to D. melanogaster. In this study, we made use of a panel of Pf-5 mutants having single or multiple mutations in the biosynthetic gene clusters for seven natural products and two exoenzymes that are produced by the bacterium under the control of gacA. Our results demonstrate that the production of rhizoxin analogs, orfamide A, and chitinase are required for full oral toxicity of Pf-5 against D. melanogaster, with rhizoxins being the primary determinant.


Assuntos
Proteínas de Bactérias/metabolismo , Quitinases/metabolismo , Drosophila melanogaster/microbiologia , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Pseudomonas/metabolismo , Animais , Proteínas de Bactérias/genética , Quitinases/genética , Drosophila melanogaster/efeitos dos fármacos , Genes Reguladores , Lipopeptídeos/toxicidade , Mutação , Peptídeos Cíclicos/toxicidade , Pseudomonas/enzimologia , Pseudomonas/genética , Pseudomonas/patogenicidade , Virulência
5.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22792073

RESUMO

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Assuntos
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análise de Sequência de DNA , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidade Genética , Variação Genética , Interações Hospedeiro-Patógeno/genética , Insetos/genética , Família Multigênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas/genética , Plantas/microbiologia , Sequências Repetitivas de Ácido Nucleico/genética , Resorcinóis/metabolismo
6.
Mol Plant Microbe Interact ; 27(7): 733-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24742073

RESUMO

Bacteria in the diverse Pseudomonas fluorescens group include rhizosphere inhabitants known for their antifungal metabolite production and biological control of plant disease, such as Pseudomonas protegens Pf-5, and mushroom pathogens, such as Pseudomonas tolaasii. Here, we report that strain Pf-5 causes brown, sunken lesions on peeled caps of the button mushroom (Agaricus bisporus) that resemble brown blotch symptoms caused by P. tolaasii. Strain Pf-5 produces six known antifungal metabolites under the control of the GacS/GacA signal transduction system. A gacA mutant produces none of these metabolites and did not cause lesions on mushroom caps. Mutants deficient in the biosynthesis of the antifungal metabolites 2,4-diacetylphloroglucinol and pyoluteorin caused less-severe symptoms than wild-type Pf-5 on peeled mushroom caps, whereas mutants deficient in the production of lipopeptide orfamide A caused similar symptoms to wild-type Pf-5. Purified pyoluteorin and 2,4-diacetylphloroglucinol mimicked the symptoms caused by Pf-5. Both compounds were isolated from mushroom tissue inoculated with Pf-5, providing direct evidence for their in situ production by the bacterium. Although the lipopeptide tolaasin is responsible for brown blotch of mushroom caused by P. tolaasii, P. protegens Pf-5 caused brown blotch-like symptoms on peeled mushroom caps through a lipopeptide-independent mechanism involving the production of 2,4-diacetylphloroglucinol and pyoluteorin.


Assuntos
Agaricales/efeitos dos fármacos , Antifúngicos/metabolismo , Proteínas de Bactérias/metabolismo , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Pseudomonas/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Mutação , Pseudomonas/genética
7.
Curr Opin Plant Biol ; 68: 102233, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679804

RESUMO

Plants counter disease with an array of responses to styme pathogen ingress. In contrast to this cacophony, plant pathogens orchestrate a finely tuned repertoire of virulence mechanisms in their attempt to cause disease. One such example is the production of secondary metabolite effectors (SMEs). Despite many attempts to functionally categorize SMEs, their many roles in plant disease have proven they march to the beat of their producer's drum. Some lesser studied features of SMEs in plant disease include self-resistance (SR) and manipulation of the microbiome to enhance pathogen virulence. SR can be accomplished in three general compositions, with the first being the transport of the SME to a benign location; the second being modification of the SME so it cannot harm the producer; and the third being metabolic regulation of the SME or the producer homolog of the SME target. SMEs may also play an interlude prior to disease by shaping the plant microbial community, allowing producers to better establish themselves. Taken together, SMEs are integral players in the phytopathology canon.


Assuntos
Doenças das Plantas , Plantas , Virulência
8.
Mol Plant Pathol ; 22(3): 301-316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369055

RESUMO

Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola-sugar beet disease process.


Assuntos
Beta vulgaris/microbiologia , Cercospora/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Perileno/análogos & derivados , Doenças das Plantas/microbiologia , Cercospora/crescimento & desenvolvimento , Cercospora/patogenicidade , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Necrose , Perileno/metabolismo , Fenótipo , Filogenia , Folhas de Planta/microbiologia , Virulência , Fatores de Virulência
9.
Mol Plant Pathol ; 21(8): 1020-1041, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681599

RESUMO

Cercospora leaf spot, caused by the fungal pathogen Cercospora beticola, is the most destructive foliar disease of sugar beet worldwide. This review discusses C. beticola genetics, genomics, and biology and summarizes our current understanding of the molecular interactions that occur between C. beticola and its sugar beet host. We highlight the known virulence arsenal of C. beticola as well as its ability to overcome currently used disease management strategies. Finally, we discuss future prospects for the study and management of C. beticola infections in the context of newly employed molecular tools to uncover additional information regarding the biology of this pathogen. TAXONOMY: Cercospora beticola Sacc.; Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Capnodiales, Family Mycosphaerellaceae, Genus Cercospora. HOST RANGE: Well-known pathogen of sugar beet (Beta vulgaris subsp. vulgaris) and most species of the Beta genus. Reported as pathogenic on other members of the Chenopodiaceae (e.g., lamb's quarters, spinach) as well as members of the Acanthaceae (e.g., bear's breeches), Apiaceae (e.g., Apium), Asteraceae (e.g., chrysanthemum, lettuce, safflower), Brassicaceae (e.g., wild mustard), Malvaceae (e.g., Malva), Plumbaginaceae (e.g., Limonium), and Polygonaceae (e.g., broad-leaved dock) families. DISEASE SYMPTOMS: Leaves infected with C. beticola exhibit circular lesions that are coloured tan to grey in the centre and are often delimited by tan-brown to reddish-purple rings. As disease progresses, spots can coalesce to form larger necrotic areas, causing severely infected leaves to wither and die. At the centre of these spots are black spore-bearing structures (pseudostromata). Older leaves often show symptoms first and younger leaves become infected as the disease progresses. MANAGEMENT: Application of a mixture of fungicides with different modes of action is currently performed although elevated resistance has been documented in most employed fungicide classes. Breeding for high-yielding cultivars with improved host resistance is an ongoing effort and prudent cultural practices, such as crop rotation, weed host management, and cultivation to reduce infested residue levels, are widely used to manage disease. USEFUL WEBSITE: https://www.ncbi.nlm.nih.gov/genome/11237?genome_assembly_id=352037.


Assuntos
Beta vulgaris/microbiologia , Cercospora/patogenicidade , Doenças das Plantas/microbiologia , Acanthaceae/microbiologia , Apiaceae/microbiologia , Asteraceae/microbiologia , Brassicaceae/microbiologia , Cercospora/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Malvaceae/microbiologia , Plumbaginaceae/microbiologia , Polygonaceae/microbiologia
10.
PLoS One ; 11(8): e0161120, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27580176

RESUMO

Ten strains representing four lineages of the Pseudomonas fluorescens group (P. chlororaphis, P. corrugata, P. koreensis, and P. fluorescens subgroups) were evaluated for toxicity to the tobacco hornworm Manduca sexta and the common fruit fly Drosophila melanogaster. The three strains within the P. chlororaphis subgroup exhibited both oral and injectable toxicity to the lepidopteran M. sexta. All three strains have the gene cluster encoding the FitD insect toxin and a ΔfitD mutant of P. protegens strain Pf-5 exhibited diminished oral toxicity compared to the wildtype strain. Only one of the three strains, P. protegens Pf-5, exhibited substantial levels of oral toxicity against the dipteran D. melanogaster. Three strains in the P. fluorescens subgroup, which lack fitD, consistently showed significant levels of injectable toxicity against M. sexta. In contrast, the oral toxicity of these strains against D. melanogaster was variable between experiments, with only one strain, Pseudomonas sp. BG33R, causing significant levels of mortality in repeated experiments. Toxin complex (Tc) gene clusters, which encode insecticidal properties in Photorhabdus luminescens, were identified in the genomes of seven of the ten strains evaluated in this study. Within those seven genomes, six types of Tc gene clusters were identified, distinguished by gene content, organization and genomic location, but no correlation was observed between the presence of Tc genes and insect toxicity of the evaluated strains. Our results demonstrate that members of the P. fluorescens group have the capacity to kill insects by both FitD-dependent and independent mechanisms.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Família Multigênica , Pseudomonas fluorescens/genética , Animais , Drosophila melanogaster , Manduca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA