RESUMO
This study is aimed to model and optimize the decolorization of reactive black 5 (RB5) dye using Bacillus albus DD1. The response surface methodology (RSM) along with rotatable central composite design (rCCD) is used to optimize the response, % decolorization with four input variables: (i) pH (5-9), initial dye concentration (50-500 ppm), the composition of yeast extract as nitrogen source (0.2-1%) and amount of bacterial inoculum (5-25% v/v). The % decolorization is predicted to be ≈ 98% at the optimized condition (pH = 7.6, dye concentration = 200 ppm, bacterial inoculum = 20 v/v% and yeast extract = 0.4%). Furthermore, the kinetics and thermodynamics of RB5 degradation are also determined. The kinetic order of biodegradation of RB5 is found to follow first-order kinetics with a kinetic rate constant = 0.0384. The activation energy, Ea and frequency factor, A values are calculated as 34.46 kJ/mol and 24,343 (1/Day). A thermodynamic study is also carried out at different temperatures (298 K, 308 K, 310 K, 313 K, and 318 K) using optimized conditions. The values of the ΔH and ΔS are found to be +30.79 kJ/mol, and -0.1 kJ/mol/K, respectively using the Eyring-Polanyi equation. The values of ΔG are also calculated at all temperatures.
Assuntos
Corantes , Águas Residuárias , Bacillus , Bactérias/metabolismo , Corantes/química , Cinética , Naftalenossulfonatos , Têxteis , TermodinâmicaRESUMO
A chromate-resistant bacterial strain was isolated from tannery effluent; based on morphological, biochemical, and 16S rRNA gene sequencing, it was identified as Alkalihalobacillus clausii and designated A. clausii CRA1. It was found to be halophilic, alkaliphilic, and resistant to multiple heavy metals like Cr(VI), Cd(II), As(II), Pb(II), Ni(II), Hg(II), Cu(II), Zn(II), and Fe(II). The strain was found to reduce 72% of chromate in 6 days in Cr(VI) spiked Luria Bertani medium with unaffected bacterial growth at an initial C(VI) concentration of 50 mg L-1. Chromate reductase activity of culture supernatant (cultivated in LB broth) and cell lysate of the bacterium was found to be 23 and 43U, where 1U is µmol of Cr(VI) reduced/min/mg protein. Flow cytometry studies revealed that no significant effect of Cr(VI) on cell viability was observed till 12 h of exposure at 100, 200, 400 mg L-1 concentrations, indicated by non-significant cell death (propidium iodide positive cells). However, at 800 and 1000 mg L-1 Cr(VI) concentration, toxicity (cell death) was observed after 12 h of exposure. FACs studies also indicated that exposure to Cr(VI) increases cell size and cell granularity, which was also confirmed in SEM and TEM images of Cr(VI) treated cells. The presence of Cr(III) species in EDX spectra of Cr(VI) treated cells confirms that reduction of Cr(VI) to Cr(III) is the primary mechanism of Cr(VI) removal by the bacterium. Therefore, the bacterium A. clausii has potential for application in chromate removal from industrial waste effluents.
Assuntos
Bacillaceae/metabolismo , Cromo/metabolismo , Metais Pesados , Biodegradação Ambiental , Citometria de Fluxo , Metais Pesados/metabolismo , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: Accretion of organic and inorganic contaminants in soil interferes in the food chain, thereby posing a serious threat to the ecosystem and adversely affecting crop productivity and human life. Both endophytic and rhizospheric microbial communities are responsible for the biodegradation of toxic organic compounds and have the capability to enhance the uptake of heavy metals by plants via phytoremediation approaches. The diverse set of metabolic genes encoding for the production of biosurfactants and biofilms, specific enzymes for degrading plant polymers, modification of cell surface hydrophobicity and various detoxification pathways for the organic pollutants, plays a significant role in bacterial driven bioremediation. Various genetic engineering approaches have been demonstrated to modulate the activity of specific microbial species in order to enhance their detoxification potential. Certain rhizospheric bacterial communities are genetically modified to produce specific enzymes that play a role in degrading toxic pollutants. Few studies suggest that the overexpression of extracellular enzymes secreted by plant, fungi or rhizospheric microbes can improve the degradation of specific organic pollutants in the soil. Plants and microbes dwell synergistically, where microbes draw benefit by nutrient acquisition from root exudates whereas they assist in plant growth and survival by producing certain plant growth promoting metabolites, nitrogen fixation, phosphate solubilization, auxin production, siderophore production, and inhibition or suppression of plant pathogens. Thus, the plant-microbe interaction establishes the foundation of the soil nutrient cycle as well as decreases soil toxicity by the removal of harmful pollutants. CONCLUSION: The perspective of integrating genetic approach with bioremediation is crucial to evaluate connexions among microbial communities, plant communities and ecosystem processes with a focus on improving phytoremediation of contaminated sites.
RESUMO
Lead accumulation in soils is of serious concern in agricultural production due to the harmful effects on soil microflora, crop growth and food safety. In soil, speciation of lead greatly affects its bioavailability and thus its toxicity on plants and microbes. Many plants and bacteria have evolved to develop detoxification mechanisms to counter the toxic effect of lead. Factors influencing the lead speciation include soil pH, organic matter, presence of various amendments, clay minerals and presence of organic colloids and iron oxides. Unlike, other metals little is known about the speciation and mobility of lead in soil. This review focuses on the speciation of lead in soil, its mobility, toxicity, uptake and detoxification mechanisms in plants and bacteria and bioremediation strategies for remediation of lead contaminated repositories.
Assuntos
Biodegradação Ambiental , Chumbo/análise , Plantas/metabolismo , Poluentes do Solo/análise , Solo/química , Agricultura , Disponibilidade Biológica , Inocuidade dos Alimentos , Chumbo/química , Chumbo/metabolismo , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/metabolismoRESUMO
In this study, Nernst growth model equations are used to explain the anodic biofilm (ABF) modeling, linear sweep voltammetry (LSV) at various growth stages of biofilm, and polarization curve modeling for its electron generation behavior in a miniaturized single-chambered microbial fuel cell (SMFC). Kinetic constants of various growth model equations were determined using non-linear regression analysis. Maximum specific growth rate (µmax) at anodic surface is observed 0.016 h-1 at a glucose concentration of 12 g L-1, whereas retardation in µmax is observed 14 g L-1 or more in SMFC. LSV results showed maximum current density of 6720.56 mA m-2. Anode performance in SMFC is examined through polarization curve resulting maximum open-circuit voltage (OCV), minimum charge transfer loss, and ohmic loss for NWG (NiWO4 impregnated on rGO), NiWO4, rGO, and plain CC (carbon cloth) anode. These results demonstrate significant enhancement in performance of MFC to lead towards model-based process controlling for significant scale-up in future.
RESUMO
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
RESUMO
Due to extensive industrialization and escalation in pollution, the world is facing problems related to soil heavy metal pollution. The traditional ways of soil remediation are neither feasible nor cost-effective in most of the real-world scenarios, where metal concentration is relatively low in soil. Therefore, phytoremediation using plants and plant secretions to remediate heavy metal-contaminated soil is recently getting more attention. The plant root exudates act as an ecological driver in the rhizospheric region where they influence and guide the microbial community to function in such a way that can be advantageous for plant growth. They also promote phytoremediation process by altering the bioavailability of pollutants in soil. Root exudates affect the biogeochemical properties of heavy metals as well. In this review, existing literature on the role of root exudates (natural as well as artificial) on the phytoremediation of heavy metal-contaminated (particularly lead) soil is reviewed. The effect of root exudates on the biogeochemistry of lead in soil is also discussed.
RESUMO
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Assuntos
Artrite Reumatoide , Nanopartículas , Humanos , Artrite Reumatoide/tratamento farmacológico , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Inflamação/tratamento farmacológicoRESUMO
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/químicaRESUMO
Reactive Black 5 is one of the most widely used dye in textile and other industries. It is one of the significantly toxic azo dye which poses a serious threat to the environment when discharged into water bodies. A bacterial strain having potential to decolourise and degrade RB5 was isolated from textile effluent, and further identified and characterized. On the basis of morphological, biochemical, and 16s rRNA sequence analysis, the isolate was identified as Bacillus albus DD1. It showed 98% removal of RB5 from aqueous medium within 38 h under optimum parameters, pH 7, temperature 40 °C, in the presence of 1% yeast extract as a co-substrate, and 25% inoculum size at the initial dye concentration of 50 mg/l. Kinetic study revealed the decolorization reaction is a first order non- spontaneous reaction. The rate constant and reaction rate for RB5 decolourization in presence of the isolate was 0.0523 s-1 and 2.6 × 10-3 mol/m3 sec, respectively. Values for ΔH and ΔS of the decolourization reaction, determined by thermodynamic analysis, were estimated to be +20.80 kJ/mol and ΔS = -0.1 kJ/mol K, respectively. LC-MS analysis revealed that decolorization was due to degradation of RB5 by cleavage of azo-bond by the bacterium, with the formation of s 3,6,8-trihyroxynapthalene and phthalic acid as degradation products. Therefore, the bacterium Bacillus albus DD1 has potential for application in biological treatment of dye contaminated industrial waste water.
RESUMO
Microbial fuel cells (MFCs) technology have the potential to decarbonize electricity generation and offer an eco-friendly route for treating a wide range of industrial effluents from power generation, petrochemical, tannery, brewery, dairy, textile, pulp/paper industries, and agro-industries. Despite successful laboratory-scale studies, several obstacles limit the MFC technology for real-world applications. This review article aimed to discuss the most recent state-of-the-art information on MFC architecture, design, components, electrode materials, and anodic exoelectrogens to enhance MFC performance and reduce cost. In addition, the article comprehensively reviewed the industrial effluent characteristics, integrating conventional technologies with MFCs for advanced resource recycling with a particular focus on the simultaneous bioelectricity generation and treatment of various industrial effluents. Finally, the article discussed the challenges, opportunities, and future perspectives for the large-scale applications of MFCs for sustainable industrial effluent management and energy recovery.
Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Têxteis , Águas ResiduáriasRESUMO
Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity. This flow of electrons is greatly influenced by the electrode properties and thus, much effort has been made towards electrode modification to improve the MFC performance. Different semiconductors, nanostructured metal oxides and their composite materials have been used to modify the anode as they possess high specific surface area, good biocompatibility, chemical stability and conductive properties. The cathode materials have also been modified using metals like platinum and nano-composites for increasing the redox potential, electrical conductivity and surface area. Therefore, this paper reviews the recent developments in the modification of electrodes towards improving the power generation capacity of MFCs.
Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , CinéticaRESUMO
The chemical composition of root exudates and root extracts from Chrysopogon zizanioides (L.) Roberty cv KS-1 was determined in the presence of lead [Pb(II)]. Hitherto, no information is available in the literature concerning the phytochemical components of root exudates of C. zizanioides. Significantly higher concentrations of total carbohydrates (26.75 and 42.62% in root exudates and root extract, respectively), reducing sugars (21.46 and 56.11% in root exudates and root extract, respectively), total proteins (9.22 and 23.70% in root exudates and root extract, respectively), total phenolic acids (14.69 and 8.33% in root exudates and root extract, respectively), total flavonoids (14.30 and 12.28% in root exudates and root extract, respectively), and total alkaloids (12.48 and 7.96% in root exudates and root extract, respectively) were observed in samples from plants growing under Pb(II) stress in comparison to the respective controls. GC-MS profiling showed the presence of a diverse group of compounds in root exudates and extracts, including terpenes, alkaloids, flavonoids, carotenoids, plant hormones, carboxylic/organic acids, and fatty acids. Among the detected compounds, many have an important role in plant development, regulating rhizosphere microbiota and allelopathy. Furthermore, the results indicated that C. zizanioides exudates possess a chemotactic response for rhizospheric bacterial strains Bacillus licheniformis, Bacillus subtilis, and Acinetobacter junii Pb1.
Assuntos
Vetiveria , Bactérias , Ácidos Carboxílicos/análise , Vetiveria/metabolismo , Exsudatos e Transudatos , Flavonoides/farmacologia , Chumbo/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/metabolismoRESUMO
Adsorption of phorate, an organophosphorus pesticide, on a vertisol soil was studied. The resulting data were well described by Freundlich and Langmuir adsorption isotherms. Adsorption was fast and the equilibrium was established within 8 h, which is comparatively less than reported previously. The mechanism of interaction between phorate and clay and humic acid extracted from the same soil was studied by Fourier-transform infrared (FTIR) spectroscopy. FTIR results suggested the formation of hydrogen bonds between carboxylic acid groups present in humic acid and appropriate electrophilic hydrogen atoms present in phorate. Also there is an indication of involvement of -P-O- group of phorate in the interaction with humic acid. However, the binding of phorate with clay minerals involves van der Waal forces of attraction.
Assuntos
Praguicidas/química , Forato/química , Poluentes do Solo/química , Solo/análise , Adsorção , Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Argila , Substâncias Húmicas/análise , Modelos Químicos , Praguicidas/análise , Forato/análise , Poluentes do Solo/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Difração de Raios XRESUMO
NiWO4 and graphene oxide (NWG) modified anodic carbon cloth (CC) is used to improve the performance of single chambered microbial fuel cell (SMFC) by statistical optimization of operational parameters. The properties of synthesized NWG nanocomposite on the surface of modified anode are characterized by FTIR, XRD, EDX, TEM and SEM analysis. The optimum level of operational parameters maximize the power density (PD) 1458â¯mW/m2 of SMFC having NWG modified anode and observed 8.5 fold improvements with respect to control. The electrochemical activities of the modified/un-modified anode in SMFC are determined by CV, PD, polarization curves and EIS. Significant improvement occurs in electron transfer between the microbes and modified anode due to internal resistance reduction and better biocompatible surface observed by EIS and microbial analysis results. The 10 miniaturize SMFCs in series, parallel and series-parallel connections produced 7, 31 and 18% higher PD in comparison with a medium size SMFC, respectively.
Assuntos
Fontes de Energia Bioelétrica , Grafite , Microbiota , Eletrodos , ÓxidosRESUMO
This study explores the potential of lead resistant bacterium Acinetobacter junii Pb1 for adsorption/accumulation of lead using various techniques. In the present work, growth of A. junii Pb1 was investigated in the presence of a range of Pb(II) concentrations (0, 100, 250, 500, and 1000 mg l-1). Lead was found to have no toxic effect on the growth of A. junii Pb1 at 100 and 250 mg l-1 concentrations. However, further increase in Pb(II) concentration (500 mg l-1) showed increase in lag phase, though growth remained unaffected and significant growth inhibition was observed when concentration was increased to 1000 mg l-1. Same was confirmed by the observations of flow cytometry. Further, the effect of Pb(II) on A. junii Pb1 was evaluated by using fluorescence microscopy, spectrofluorimetry, and flow cytometry. The spectrofluorimetry and fluorescence microscopy results revealed the accumulation of Pb(II) inside the bacterial cells as evident by green fluorescence due to lead binding fluorescent probe, Leadmium Green AM dye. Flow cytometry observations indicate an increase in cell size and granularity of exposure to lead. Thus, present work provides a new understanding of Pb(II) tolerance in A. junii Pb1 and its potential use in remediation of lead from contaminated soil.
Assuntos
Acinetobacter/metabolismo , Chumbo/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/crescimento & desenvolvimento , Biodegradação Ambiental , Citometria de Fluxo , Chumbo/análise , Chumbo/toxicidadeRESUMO
A lead-resistant bacterial strain was isolated from coal mine dump and identified as Acinetobacter junii Pb1 on basis of 16S rRNA (ribosomal ribonucleic acid) gene sequencing. The minimum inhibitory concentration of lead for the strain was 16,000 mg l-1 and it showed antibiotic and multi metal resistance. In aqueous culture, at an initial lead (Pb(II)) concentration of 100 and 500 mg l-1, lead adsorption and accumulation by the isolate was 100 and 60%, at pH 7 at 30 °C after 48 and 120 h, respectively. The two fractions of exopolysaccharide (EPS), loosely associated EPS (laEPS) and bound EPS (bEPS), and whole cells (devoid of EPS) showed high binding affinity towards Pb(II). The binding affinity of laEPS towards Pb(II) (1071 mg Pb g-1) was three times higher than that of bEPS (321.5 mg Pb g-1) and 6.5 times higher than that of whole cells (165 mg Pb g-1). The binding affinity of EPS and whole cells with Pb(II), reported in the current study, is considerably higher as compared to that reported in the literature, till date. SEM analysis, showed an increase in thickness of cells on exposure to Pb(II) and TEM analysis, revealed its accumulation (interior of cell) and its adsorption (with the external cell surface). The isolate was also found to be positive for indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production which helps in promoting plant growth. Thus, this study provides a new understanding towards Pb(II) uptake by A. junii Pb1, highlighting its potential on the restoration of Pb(II) contaminated repositories.
Assuntos
Chumbo/metabolismo , RNA Ribossômico 16S/genética , Acinetobacter , Adsorção , Carvão Mineral , Nucleotídeos de DesoxiuracilRESUMO
The bacterium MNU16 was isolated from contaminated soils of coal mine and subsequently screened for different plant growth promoting (PGP) activities. The isolate was further identified by 16S rRNA sequencing as Bacillus subtilis MNU16 with IAA concentration (56.95 ± 0.43 6µg/ml), siderophore unit (9.73 ± 2.05%), phosphate solubilization (285.13 ± 1.05 µg/ml) and ACC deaminase activity (116.79 ± 0.019 µmoles α-ketobutyrate/mg/24 h). Further, to evaluate the metal resistance profile of bacterium, the isolate was screened for multi-metal resistance (viz. 900 mg/L for Cr, 600 mg/L for As, 700 mg/L for Ni and 300 mg/L for Hg). Additionally, the resistance pattern of B. subtilis MNU16 against Cr(VI) (from 50 to 300 mg/L) treatments were evaluated. An enriched population was observed at 0-200 mg/L Cr(VI) concentration while slight reductions were observed at 250 and 300 mg/L Cr(VI). Further, the chromium reduction ability at 50 mg/L of Cr(VI) highlighted that the bacterium B. subtilis MNU16 reduced 75% of Cr(VI) to 13.23 mg/L within 72 h. The localization of electron dense precipitates was observed in the TEM images of B. subtilis MNU16 which is might be due to the reduction of Cr(VI) to Cr(III). The data of fluorescence microscopy and flow cytometry with respect to Cr(VI) treatments (50-300 mg/L) showed a similar pattern and clearly revealed the less toxic effect of hexavalent chromium upto 200 mg/L Cr(VI) concentration. However, toxicity effects were more pronounced at 300 mg/L Cr(VI). Therefore, the present study suggests that the plant growth promoting potential and resistance efficacy of B. subtilis MNU16 will go a long way in developing an effective bioremediation approach for Cr(VI) contaminated soils.
RESUMO
INTRODUCTION: Visual disturbance as a presenting feature of pseudohypoparathyroidism (PHP) is uncommon. Although papilledema is commonly reported with hypoparathyroidism primary or secondary, but not reported commonly with PHP. DESCRIPTION OF THE CASE: A 10-year-old male child presented to our outpatient service with the complaints of blurring of vision, diplopia, and associated headache. There was no history of seizure episode. Patient had rounded face with a short, stocky built. Shortening of the fourth metacarpal and fifth metatarsal was present. Pitted nails and bilateral cataract. Patient also had clinical signs and biochemical parameters of hypocalcemia, along with normal parathyroid hormone (PTH) levels. Consistent with pseudohypopathyroidism. CONCLUSION: In cases of chronic papilledema, the assessment of the calcium serum level is a safe and simple method to exclude hypoparathyroidism or PHP.