Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Genes Dev ; 32(3-4): 224-229, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483155

RESUMO

DNA replication origins in hyperacetylated euchromatin fire preferentially during early S phase. However, how acetylation controls DNA replication timing is unknown. TICRR/TRESLIN is an essential protein required for the initiation of DNA replication. Here, we report that TICRR physically interacts with the acetyl-histone binding bromodomain (BRD) and extraterminal (BET) proteins BRD2 and BRD4. Abrogation of this interaction impairs TICRR binding to acetylated chromatin and disrupts normal S-phase progression. Our data reveal a novel function for BET proteins and establish the TICRR-BET interaction as a potential mechanism for epigenetic control of DNA replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Epigênese Genética , Proteínas de Ciclo Celular/química , Linhagem Celular , Cromatina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Fatores de Transcrição/metabolismo
2.
Chromosome Res ; 31(1): 6, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708487

RESUMO

Cohesion between sister chromatids by the cohesin protein complex ensures accurate chromosome segregation and enables recombinational DNA repair. Sister chromatid cohesion is promoted by acetylation of the SMC3 subunit of cohesin by the ESCO2 acetyltransferase, inhibiting cohesin release from chromatin. The interaction of ESCO2 with the DNA replication machinery, in part through PCNA-interacting protein (PIP) motifs in ESCO2, is required for full cohesion establishment. Recent reports have suggested that Cul4-dependent degradation regulates the level of ESCO2 protein following replication. To follow up on these observations, we have characterized ESCO2 stability in Xenopus egg extracts, a cell-free system that recapitulates cohesion establishment in vitro. We found that ESCO2 was stable during DNA replication in this system. Indeed, further challenging the system by inducing DNA damage signaling or increasing the number of nuclei undergoing DNA replication had no significant impact on the stability of ESCO2. In transgenic somatic cell lines, we also did not see evidence of GFP-ESCO2 degradation during S phase of the cell cycle using both flow cytometry and live-cell imaging. We conclude that ESCO2 is stable during DNA replication in both embryonic and somatic cells.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Acetiltransferases/metabolismo , Coesinas
3.
Proc Natl Acad Sci U S A ; 117(2): 1081-1089, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879348

RESUMO

The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.


Assuntos
Acetiltransferases/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Replicação do DNA/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , DNA Helicases/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vertebrados/genética , Coesinas
4.
Proc Natl Acad Sci U S A ; 114(37): 9906-9911, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847955

RESUMO

Sister chromatids are tethered together by the cohesin complex from the time they are made until their separation at anaphase. The ability of cohesin to tether sister chromatids together depends on acetylation of its Smc3 subunit by members of the Eco1 family of cohesin acetyltransferases. Vertebrates express two orthologs of Eco1, called Esco1 and Esco2, both of which are capable of modifying Smc3, but their relative contributions to sister chromatid cohesion are unknown. We therefore set out to determine the precise contributions of Esco1 and Esco2 to cohesion in vertebrate cells. Here we show that cohesion establishment is critically dependent upon Esco2. Although most Smc3 acetylation is Esco1 dependent, inactivation of the ESCO1 gene has little effect on mitotic cohesion. The unique ability of Esco2 to promote cohesion is mediated by sequences in the N terminus of the protein. We propose that Esco1-dependent modification of Smc3 regulates almost exclusively the noncohesive activities of cohesin, such as DNA repair, transcriptional control, chromosome loop formation, and/or stabilization. Collectively, our data indicate that Esco1 and Esco2 contribute to distinct and separable activities of cohesin in vertebrate cells.


Assuntos
Acetiltransferases/metabolismo , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Acetilação , Acetiltransferases/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Replicação do DNA/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Proteínas Nucleares/metabolismo , Coesinas
5.
Chromosome Res ; 25(2): 115-128, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28050734

RESUMO

During meiotic prophase, cohesin complexes mediate cohesion between sister chromatids and promote pairing and synapsis of homologous chromosomes. Precisely how the activity of cohesin is controlled to promote these events is not fully understood. In metazoans, cohesion establishment between sister chromatids during mitotic divisions is accompanied by recruitment of the cohesion-stabilizing protein Sororin. During somatic cell division cycles, Sororin is recruited in response to DNA replication-dependent modification of the cohesin complex by ESCO acetyltransferases. How Sororin is recruited and acts in meiosis is less clear. Here, we have surveyed the chromosomal localization of Sororin and its relationship to the meiotic cohesins and other chromatin modifiers with the objective of determining how Sororin contributes to meiotic chromosome dynamics. We show that Sororin localizes to the cores of meiotic chromosomes in a manner that is dependent on synapsis and the synaptonemal complex protein SYCP1. In contrast, cohesin, with which Sororin interacts in mitotic cells, shows axial enrichment on meiotic chromosomes even in the absence of synapsis between homologs. Using high-resolution microscopy, we show that Sororin is localized to the central region of the synaptonemal complex. These results indicate that Sororin regulation during meiosis is distinct from its regulation in mitotic cells and may suggest that it interacts with a distinctly different partner to ensure proper chromosome dynamics in meiosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Cromossomos/química , Meiose , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Camundongos , Mitose , Complexo Sinaptonêmico , Coesinas
6.
Proc Natl Acad Sci U S A ; 110(28): 11355-60, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23776203

RESUMO

Cohesin, along with positive regulators, establishes sister-chromatid cohesion by forming a ring to circle chromatin. The wings apart-like protein (Wapl) is a key negative regulator of cohesin and forms a complex with precocious dissociation of sisters protein 5 (Pds5) to promote cohesin release from chromatin. Here we report the crystal structure and functional characterization of human Wapl. Wapl contains a flexible, variable N-terminal region (Wapl-N) and a conserved C-terminal domain (Wapl-C) consisting of eight HEAT (Huntingtin, Elongation factor 3, A subunit, and target of rapamycin) repeats. Wapl-C folds into an elongated structure with two lobes. Structure-based mutagenesis maps the functional surface of Wapl-C to two distinct patches (I and II) on the N lobe and a localized patch (III) on the C lobe. Mutating critical patch I residues weaken Wapl binding to cohesin and diminish sister-chromatid resolution and cohesin release from mitotic chromosomes in human cells and Xenopus egg extracts. Surprisingly, patch III on the C lobe does not contribute to Wapl binding to cohesin or its known regulators. Although patch I mutations reduce Wapl binding to intact cohesin, they do not affect Wapl-Pds5 binding to the cohesin subcomplex of sister chromatid cohesion protein 1 (Scc1) and stromal antigen 2 (SA2) in vitro, which is instead mediated by Wapl-N. Thus, Wapl-N forms extensive interactions with Pds5 and Scc1-SA2. Wapl-C interacts with other cohesin subunits and possibly unknown effectors to trigger cohesin release from chromatin.


Assuntos
Proteínas de Transporte/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Conformação Proteica , Proteínas Proto-Oncogênicas/genética , Coesinas
7.
Biology (Basel) ; 13(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666870

RESUMO

The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.

8.
J Biol Chem ; 287(41): 34325-36, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22896698

RESUMO

Acetylation of the Smc3 subunit of cohesin is essential to establish functional cohesion between sister chromatids. Smc3 acetylation is catalyzed by members of the Eco family of acetyltransferases, although the mechanism by which acetylation is regulated and how it promotes cohesion are largely unknown. In vertebrates, the cohesin complex binds to chromatin during mitotic exit and is converted to a functional form during or shortly after DNA replication. The conserved proliferating cell nuclear antigen-interacting protein box motif in yeast Eco1 is required for function, and cohesin is acetylated during the S phase. This has led to the notion that acetylation of cohesin is stimulated by interaction of Eco1 with the replication machinery. Here we show that in vertebrates Smc3 acetylation occurs independently of DNA replication. Smc3 is readily acetylated before replication is initiated and after DNA replication is complete. However, we also show that functional acetylation occurs only in association with the replication machinery: disruption of the interaction between XEco2 and proliferating cell nuclear antigen prevents cohesion establishment while having little impact on the overall levels of Smc3 acetylation. These results demonstrate that Smc3 acetylation can occur throughout interphase but that only acetylation in association with the replication fork promotes sister chromatid cohesion. These data reveal how the generation of cohesion is limited to the appropriate time and place during the cell cycle and provide insight into the mechanism by which acetylation ensures cohesion.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/fisiologia , Mitose/fisiologia , Proteínas de Xenopus/metabolismo , Acetilação , Animais , Xenopus laevis , Coesinas
9.
Proc Natl Acad Sci U S A ; 107(47): 20364-9, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059905

RESUMO

Sister chromatids are held together, from the time they are made during S phase until they are pulled apart just before cell division, by a protein complex called cohesin. The mechanistic details by which sister chromatid cohesion is established and maintained have remained elusive, particularly in vertebrate systems. Sororin, a protein that interacts with the cohesin complex, is essential for cohesion in vertebrates, but how it participates in the process is unknown. Here we demonstrate that sororin recruitment depends on active DNA replication and that sororin loading onto chromosomes depends upon another essential cohesion factor, the acetyltransferase Eco2. We find that Eco2, like sororin, is a substrate of the anaphase-promoting complex (APC), which ensures that protein levels remain low before S phase. These findings demonstrate that sororin and Eco2 work together to form a unique regulatory module that limits cohesion to cells with replicated chromatin and support a model in which cohesion in vertebrates is not fully established until the G2 phase of the cell cycle.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Autorradiografia , Immunoblotting , Masculino , Modelos Moleculares , Espermatozoides/citologia , Xenopus laevis , Coesinas
10.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106185

RESUMO

ESCO1 is an acetyltransferase enzyme that regulates chromosome organization and gene expression. It does this by modifying the Smc3 subunit of the Cohesin complex. Although ESCO1 is enriched at the base of chromatin loops in a Cohesin-dependent manner, precisely how it interacts with chromatin is unknown. Here we show that the basic and intrinsically disordered tail of ESCO1 binds DNA with very high affinity, likely through electrostatic interaction. We show that neutralization of positive residues in the N-tail reduces both DNA binding in vitro and association of the enzyme with chromatin in cells. Additionally, disruption of the chromatin state and charge distribution reduces chromatin bound ESCO1. Strikingly, defects in DNA binding do not affect total SMC3 acetylation or sister chromatid cohesion, suggesting that ESCO1-dependent acetylation can occur independently of direct chromatin association. We conclude that the intrinsically disordered tail of ESCO1 binds DNA with both high affinity and turnover, but surprisingly, ESCO1 catalytic activity occurs independently of direct DNA binding by the enzyme.

11.
Genetics ; 225(2)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37650609

RESUMO

Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.

12.
Front Bioeng Biotechnol ; 11: 1212230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485324

RESUMO

Introduction: Respiratory infections remain a leading global health concern. Models that recapitulate the cellular complexity of the lower airway of humans will provide important information about how the immune response reflects the interactions between diverse cell types during infection. We developed a 3D human tissue-engineered lung model (3D-HTLM) composed of primary human pulmonary epithelial and endothelial cells with added blood myeloid cells that allows assessment of the innate immune response to respiratory infection. Methods: The 3D-HTLM consists of small airway epithelial cells grown at air-liquid interface layered on fibroblasts within a collagen matrix atop a permeable membrane with pulmonary microvascular endothelial cells layered underneath. After the epithelial and endothelial layers had reached confluency, an enriched blood monocyte population, containing mostly CD14+ monocytes (Mo) with minor subsets of CD1c+ classical dendritic cells (cDC2s), monocyte-derived dendritic cells (Mo-DCs), and CD16+ non-classical monocytes, was added to the endothelial side of the model. Results: Immunofluorescence imaging showed the myeloid cells migrate through and reside within each layer of the model. The myeloid cell subsets adapted to the lung environment in the 3D-HTLM, with increased proportions of the recovered cells expressing lung tissue resident markers CD206, CD169, and CD163 compared with blood myeloid cells, including a population with features of alveolar macrophages. Myeloid subsets recovered from the 3D-HTLM displayed increased expression of HLA-DR and the co-stimulatory markers CD86, CD40, and PDL1. Upon stimulation of the 3D-HTLM with the toll-like receptor 4 (TLR4) agonist bacterial lipopolysaccharide (LPS), the CD31+ endothelial cells increased expression of ICAM-1 and the production of IL-10 and TNFα was dependent on the presence of myeloid cells. Challenge with respiratory syncytial virus (RSV) led to increased expression of macrophage activation and antiviral pathway genes by cells in the 3D-HTLM. Discussion: The 3D-HTLM provides a lower airway environment that promotes differentiation of blood myeloid cells into lung tissue resident cells and enables the study of respiratory infection in a physiological cellular context.

13.
J Biol Chem ; 286(5): 3579-86, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21115494

RESUMO

Sororin is a positive regulator of sister chromatid cohesion that interacts with the cohesin complex. Sororin is required for the increased stability of the cohesin complex on chromatin following DNA replication and sister chromatid cohesion during G(2). The mechanism by which sororin ensures cohesion is currently unknown. Because the primary sequence of sororin does not contain any previously characterized structural or functional motifs, we have undertaken a structure-function analysis of the sororin protein. Using a series of mutant derivatives of sororin, we show that the ability of sororin to bind to chromatin is separable from both its role in sister chromatid cohesion and its interaction with the cohesin complex. We also show that derivatives of sororin with deletions or mutations in the conserved C terminus fail to rescue the loss-of-cohesion phenotype caused by sororin RNAi and that these mutations also abrogate the association of sororin with the cohesin complex. Our data suggest that the interaction of the highly conserved motif at the C terminus of sororin with the cohesin complex is critical to its ability to mediate sister chromatid cohesion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Sequência Conservada/genética , Células HeLa , Humanos , Mutação , Ligação Proteica , Coesinas
14.
Dev Cell ; 11(6): 754-5, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17141150

RESUMO

Sister chromatids are held together by the cohesin complex from the time they are made until cell division. In recent articles published in Cell and Current Biology, the characterization of Wapl, a newly identified cohesin-interacting protein, suggests that a dynamic interaction between the cohesin complex and chromatin is important for normal regulation of sister chromatid cohesion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Proteínas/fisiologia , Troca de Cromátide Irmã/fisiologia , Animais , Humanos , Coesinas
15.
J Cell Biol ; 164(3): 407-16, 2004 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-14757753

RESUMO

Enteropathogenic Escherichia coli (EPEC) translocates effector proteins into mammalian cells to promote reorganization of the cytoskeleton into filamentous actin pedestals. One effector, Tir, is a transmembrane receptor for the bacterial surface adhesin intimin, and intimin binding by the extracellular domain of Tir is required for actin assembly. The cytoplasmic NH2 terminus of Tir interacts with focal adhesion proteins, and its tyrosine-phosphorylated COOH terminus binds Nck, a host adaptor protein critical for pedestal formation. To define the minimal requirements for EPEC-mediated actin assembly, Tir derivatives were expressed in mammalian cells in the absence of all other EPEC components. Replacement of the NH2 terminus of Tir with a viral membrane-targeting sequence promoted efficient surface expression of a COOH-terminal Tir fragment. Artificial clustering of this fusion protein revealed that the COOH terminus of Tir, by itself, is sufficient to initiate a complete signaling cascade leading to pedestal formation. Consistent with this finding, clustering of Nck by a 12-residue Tir phosphopeptide triggered actin tail formation in Xenopus egg extracts.


Assuntos
Actinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Oncogênicas/metabolismo , Fosfopeptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adesinas Bacterianas/metabolismo , Animais , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Oócitos/fisiologia , Fosfopeptídeos/genética , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Xenopus
16.
Cold Spring Harb Protoc ; 2019(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30150319

RESUMO

Extracts prepared from the eggs of frogs, particularly Xenopus species, have provided critical material for seminal studies of nuclear and chromosome dynamics over several decades. Their usefulness for these types of analyses lies in several important characteristics: stockpiled nuclear components, absence of endogenous DNA, and intact and functioning signaling networks. These factors have allowed detailed molecular analyses of many aspects of chromosome biology, including DNA replication, checkpoint signaling, epigenetic control, and chromosome condensation, cohesion, and segregation. In this introduction, the preparation and application of Xenopus egg extracts for the study of chromosomes and chromatin are described in detail.


Assuntos
Cromossomos , Óvulo/química , Animais , Ciclo Celular , Núcleo Celular/química , Cromatina/química , Xenopus
17.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475994

RESUMO

Chromosome structure in both interphase and M-phase cells is strongly influenced by the action of the cohesin and condensin protein complexes. The cohesin complex tethers the identical copies of each chromosome, called sister chromatids, together following DNA replication and promotes normal interphase chromosome structure and gene expression. In contrast, condensin is active largely in M phase and promotes the compaction of individual chromosomes. The Xenopus egg extract system is uniquely suited to analyze the functions of both complexes. Egg extracts, in which the cell cycle state can be manipulated, contain stockpiles of nuclear proteins (including condensin and cohesin) sufficient for the assembly of thousands of nuclei per microliter. Extract prepared from unfertilized eggs is arrested by the presence of cytostatic factor (CSF) in a state with high levels of M-phase kinase activity, but can be stimulated to enter interphase, in which DNA replication occurs spontaneously. For cohesion assays, demembranated sperm nuclei are incubated in interphase extract, where they undergo rapid and synchronous DNA replication and cohesion establishment through the recruitment of proteins and other factors (e.g., nucleotides) from the extract. Sister chromatid cohesion is assessed by then driving the extract into M phase by the addition of fresh CSF-arrested extract. In contrast, because chromosome condensation occurs spontaneously in M-phase extracts, sperm nuclei are added directly to CSF extracts to assay condensation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Misturas Complexas/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Xenopus , Zigoto , Animais , Coesinas
18.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27547382

RESUMO

Sister chromatids are tethered together from the time they are formed in S-phase until they separate at anaphase. A protein complex called cohesin is responsible for holding the sister chromatids together and serves important roles in chromosome condensation, gene regulation, and the repair of DNA damage. Cohesin contains an open central pore and becomes topologically engaged with its DNA substrates. Entrapped DNA can be released either by the opening of a gate in the cohesin ring or by proteolytic cleavage of a component of the ring. This review summarizes recent research that provides important new insights into how DNA enters and exits the cohesin ring and how the rings behave on entrapped DNA molecules to provide functional cohesion.

19.
Methods Enzymol ; 399: 404-14, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16338372

RESUMO

The number of identified E3 ubiquitin ligases has dramatically increased in recent years. However, the substrates targeted for degradation by these particular ligases have not been easily identified. One reason for the inability of matching substrates and ligases is the finding that E3 recognition elements in substrates are often poorly defined. This minimizes the likelihood that bioinformatic approaches will lead to the identification of E3 substrates. For example, the multi-subunit complex the anaphase promoting complex (APC) is an E3 that recognizes destruction boxes (RXXLXXXXD/N/E) or KEN motifs within substrates (Glotzer et al., 1991; Pfleger and Kirschner, 2000). However, many proteins that contain either a potential destruction or a KEN motif are not recognized by the APC in vitro or in vivo, suggesting that there are other, less well-defined characteristics of substrates that contribute to their ability to serve as APC substrates (Ayad, Rankin, and Kirschner, unpublished observations). Aside from bioinformatic approaches of identifying APC substrates, several groups have also attempted to use affinity techniques to discover novel APC substrates. This has not been widely successful, because many APC substrates are not abundant. Also, as is the case with many ligase-substrate interactions, the affinity of substrates for the APC is likely to be very low. All these considerations have motivated a search for other techniques to assist in identifying substrates of this particular E3 ligase. Here, we describe the use of in vitro expression cloning to identify novel APC substrates.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Xenopus
20.
FEBS J ; 282(13): 2426-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895170

RESUMO

In mitotically dividing cells, the cohesin complex tethers sister chromatids, the products of DNA replication, together from the time they are generated during S phase until anaphase. Cohesion between sister chromatids ensures accurate chromosome segregation, and promotes normal gene regulation and certain kinds of DNA repair. In somatic cells, the core cohesin complex is composed of four subunits: Smc1, Smc3, Rad21 and an SA subunit. During meiotic cell divisions meiosis-specific isoforms of several of the cohesin subunits are also expressed and incorporated into distinct meiotic cohesin complexes. The relative contributions of these meiosis-specific forms of cohesin to chromosome dynamics during meiotic progression have not been fully worked out. However, the localization of these proteins during chromosome pairing and synapsis, and their unique loss-of-function phenotypes, suggest non-overlapping roles in controlling meiotic chromosome behavior. Many of the proteins that regulate cohesin function during mitosis also appear to regulate cohesin during meiosis. Here we review how cohesin contributes to meiotic chromosome dynamics, and explore similarities and differences between cohesin regulation during the mitotic cell cycle and meiotic progression. A deeper understanding of the regulation and function of cohesin in meiosis will provide important new insights into how the cohesin complex is able to promote distinct kinds of chromosome interactions under diverse conditions.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Meiose , Proteínas de Transporte/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas/fisiologia , Caracteres Sexuais , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA