Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 159(2): 415-27, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303534

RESUMO

Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.


Assuntos
Células Epiteliais/citologia , Modelos Biológicos , Morfogênese , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Divisão Celular , Forma Celular , Embrião não Mamífero/citologia
2.
Cell ; 153(3): 550-61, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622240

RESUMO

Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.


Assuntos
Morfogênese , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas Hedgehog/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Wound Repair Regen ; 18(4): 349-58, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20492631

RESUMO

Progress in wound healing is primarily quantified by the rate of change of the wound's surface area. The most recent guidelines of the Wound Healing Society suggest that a reduction in wound size of <40% within 4 weeks necessitates a reevaluation of the treatment. However, accurate measurement of wound size is challenging due to the complexity of a chronic wound, the variable lighting conditions of examination rooms, and the time constraints of a busy clinical practice. In this paper, we present our methodology to quantify a wound boundary and measure the enclosed wound area reproducibly. The method derives from a combination of color-based image analysis algorithms, and our results are validated with wounds in animal models and human wounds of diverse patients. Images were taken by an inexpensive digital camera under variable lighting conditions. Approximately 100 patient images and 50 animal images were analyzed and a high overlap was achieved between the manual tracings and the calculated wound area by our method in both groups. The simplicity of our method combined with its robustness suggests that it can be a valuable tool in clinical wound evaluations. The basic challenge of our method is in deep wounds with very small surface areas where color-based detection can lead to erroneous results and which could be overcome by texture-based detection methods. The authors are willing to provide the developed MATLAB code for the work discussed in this paper.


Assuntos
Algoritmos , Superfície Corporal , Pé Diabético/patologia , Processamento de Imagem Assistida por Computador/métodos , Fotografação/métodos , Adulto , Idoso , Animais , Doença Crônica , Cor , Diabetes Mellitus Experimental/patologia , Pé Diabético/terapia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Fatores de Tempo , Resultado do Tratamento , Cicatrização
4.
Front Neuroinform ; 11: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507515

RESUMO

In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView, a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26736236

RESUMO

The utility of web browsers for general purpose computing, long anticipated, is only now coming into fruition. In this paper we present a web-based medical image data and information management software platform called ChRIS ([Boston] Children's Research Integration System). ChRIS' deep functionality allows for easy retrieval of medical image data from resources typically found in hospitals, organizes and presents information in a modern feed-like interface, provides access to a growing library of plugins that process these data - typically on a connected High Performance Compute Cluster, allows for easy data sharing between users and instances of ChRIS and provides powerful 3D visualization and real time collaboration.


Assuntos
Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Disseminação de Informação/métodos , Neuroimagem/métodos , Software , Diagnóstico por Imagem/métodos , Humanos , Imageamento Tridimensional , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA