Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Angew Chem Int Ed Engl ; 63(1): e202313852, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984926

RESUMO

An unusual set of anomalous functional properties of rocksalt crystals of Group IV chalcogenides were recently linked to a kind of bonding termed as metavalent bonding (MVB) which involves violation of the 8-N rule. Precise mechanisms of MVB and the relevance of lone pair of Group IV cations are still debated. With restrictions of low dimensionality on the possible atomic coordination, 2D materials provide a rich platform for exploration of MVB. Here, we present first-principles theoretical analysis of the nature of bonding in five distinct 2D lattices of Group IV chalcogenides MX (M: Sn, Pb, Ge and X: S, Se, Te), in which the natural out-of-plane expression of the lone pair versus in-plane bonding can be systematically explored. While their honeycomb lattices respecting the 8-N rule are shown to exhibit covalent bonding, their square and orthorhombic structures exhibit MVB only in-plane, with cationic lone pair activating the out-of-plane structural puckering that controls their relative stability. Anomalies in Born-effective charges, dielectric constants, Grüneisen parameters occur only in their in-plane behaviour, confirming MVB is confined strictly to 2D and originates from p-p orbital interactions. Our work opens up directions for chemical design of MVB based 2D materials and their heterostructures.

2.
Nanotechnology ; 34(14)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36630706

RESUMO

Niobium dioxide (NbO2) exhibits metal-insulator transition (Mott transition) and shows the potential for application in memristors and neuromorphic devices. Presently growth of NbO2thin films requires high-temperature reduction of Nb2O5films using H2or sophisticated techniques such as molecular beam epitaxy and pulsed laser deposition. The present study demonstrates a simple chemical route of the direct growth of crystalline NbO2films by chemical vapor deposition using a freshly prepared Nb-hexadecylamine (Nb-HDA) complex. X-ray diffraction studies confirm the NbO2phase with a distorted rutile body-centered-tetragonal structure and the film grown with a highly preferred orientation onc-sapphire. X-ray photoelectron spectroscopy confirms the +4 oxidation state. The present method offers facile growth of NbO2films without post-reduction steps which will be assumed to be a cost-effective process for NbO2based devices.

3.
Chemphyschem ; 23(10): e202100910, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35332645

RESUMO

Ti2 O3 thin films have been prepared through atomic layer deposition and subjected to electrical resistivity measurements as a function of temperature. The as-prepared films were stable for up to three weeks. In Ti2 O3 thin films, the insulator-metal transition is observed at ∼80 K, with nearly 3-4 orders of magnitude change in resistivity. The anomalous increase in electrical resistivity in the films is in accordance with the two-band model. However, the energy interval between the bands depending on the crystallographic c/a ratio leads to a change in electrical resistivity as a function of temperature.

4.
Chemistry ; 26(29): 6499-6503, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32162366

RESUMO

The recently discovered twisted graphene has attracted considerable interest. A simple chemical route was found to prepare twisted graphene by covalently linking layers of exfoliated graphene containing surface carboxyl groups with an amine-containing linker (trans-1,4-diaminocyclohexane). The twisted graphene shows the expected selected area electron diffraction pattern with sets of diffraction spots out with different angular spacings, unlike graphene, which shows a hexagonal pattern. Twisted multilayer graphene oxide could be prepared by the above procedure. Twisted boron nitride, prepared by cross-linking layers of boron nitride (BN) containing surface amino groups with oxalic acid linker, exhibited a diffraction pattern comparable to that of twisted graphene. First-principles DFT calculations threw light on the structures and the nature of interactions associated with twisted graphene/BN obtained by covalent linking of layers.

5.
Philos Trans A Math Phys Eng Sci ; 378(2180): 20200213, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811363

RESUMO

The demarcation of the chemical elements into metals and non-metals dates back to the dawn of Dmitri Mendeleev's construction of the periodic table; it still represents the cornerstone of our view of modern chemistry. In this contribution, a particular emphasis will be attached to the question 'Why do the chemical elements of the periodic table exist either as metals or non-metals under ambient conditions?' This is perhaps most apparent in the p-block of the periodic table where one sees an almost-diagonal line separating metals and non-metals. The first searching, quantum-mechanical considerations of this question were put forward by Hund in 1934. Interestingly, the very first discussion of the problem-in fact, a pre-quantum-mechanical approach-was made earlier, by Goldhammer in 1913 and Herzfeld in 1927. Their simple rationalization, in terms of atomic properties which confer metallic or non-metallic status to elements across the periodic table, leads to what is commonly called the Goldhammer-Herzfeld criterion for metallization. For a variety of undoubtedly complex reasons, the Goldhammer-Herzfeld theory lay dormant for close to half a century. However, since that time the criterion has been repeatedly applied, with great success, to many systems and materials exhibiting non-metal to metal transitions in order to predict, and understand, the precise conditions for metallization. Here, we review the application of Goldhammer-Herzfeld theory to the question of the metallic versus non-metallic status of chemical elements within the periodic system. A link between that theory and the work of Sir Nevill Mott on the metal-non-metal transition is also highlighted. The application of the 'simple', but highly effective Goldhammer-Herzfeld and Mott criteria, reveal when a chemical element of the periodic table will behave as a metal, and when it will behave as a non-metal. The success of these different, but converging approaches, lends weight to the idea of a simple, universal criterion for rationalizing the instantly-recognizable structure of the periodic table where …the metals are here, the non-metals are there … The challenge of the metallic and non-metallic states of oxides is also briefly introduced. This article is part of the theme issue 'Mendeleev and the periodic table'.

6.
Phys Chem Chem Phys ; 22(2): 811-817, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840719

RESUMO

The structure-activity relationship in the electrochemical OER has been studied widely, but aspects of the photoelectrochemical (PEC) O2 evolution activity with different manganese oxides are not fully explored. In the present study different manganese oxides (MnO2, MnOx (a mixture of Mn3+ and Mn4+ ions), Mn2O3, and Mn3O4) have been electrodeposited onto the BiVO4 photoanode as co-catalysts for PEC water splitting. We find that BiVO4-MnOx shows the lowest onset potential of 0.33 V vs. RHE and the highest activity among the manganese oxides. Annealing at different temperatures results in the improvement of the OER kinetics at the interface with some detrimental effect on the activity of BiVO4. Such a study may lead to useful changes in the fabrication of semiconductor thin film photoelectrodes useful for PEC water splitting.

7.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C111-C117, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175737

RESUMO

This contribution reports on the observation of a strong light localization of Anderson type in 1D systems consisting of ship-shaped carbon nanotubes. Such a localization of infrared (IR) light was observed using Fourier transform infrared spectroscopy under attenuated total reflection geometry within the spectral range of 2-20 µm. Such an IR light localization manifests itself in the form of a significant interference profile of the optical transmission over the full wavenumber range of 400-4000cm-1.

8.
Proc Natl Acad Sci U S A ; 114(51): 13385-13393, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-28522461

RESUMO

Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the high-temperature two-step process. It is noteworthy that the multistep process based on the Mn(II)/Mn(III) oxide system can be carried out at 700 °C or 750 °C. The two-step process has been achieved at 1,300 °C/900 °C by using yttrium-based rare earth manganites. It seems possible to render this high-temperature process as an isothermal process. Thermodynamics and kinetics of H2O splitting are largely controlled by the inherent redox properties of the materials. Interestingly, under the conditions of H2O splitting in the high-temperature process CO2 can also be decomposed to CO, providing a feasible method for generating the industrially important syngas (CO+H2). Although carbonate formation can be addressed as a hurdle during CO2 splitting, the problem can be avoided by a suitable choice of experimental conditions. The choice of the solar reactor holds the key for the commercialization of thermochemical fuel production.

9.
Proc Natl Acad Sci U S A ; 114(34): 8986-8990, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784781

RESUMO

Electrochemical dual-pulse plating with sequential galvanostatic and potentiostatic pulses has been used to fabricate an electrocatalytically active Ni/Ni(OH)2/graphite electrode. This electrode design strategy to generate the Ni/Ni(OH)2 interface on graphite from Ni deposits is promising for electrochemical applications and has been used by us for hydrogen generation. The synergetic effect of nickel, colloidal nickel hydroxide islands, and the enhanced surface area of the graphite substrate facilitating HO-H cleavage followed by H(ad) recombination, results in the high current density [200 mA/cm2 at an overpotential of 0.3 V comparable to platinum (0.44 V)]. The easy method of fabrication of the electrode, which is also inexpensive, prompts us to explore its use in fabrication of solar-driven electrolysis.

11.
Chemphyschem ; 20(13): 1728-1737, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31066189

RESUMO

Covalently cross-linked heterostructures of 2D materials are a new class of materials which possess electrochemical and photochemical hydrogen evolution properties. It was of considerable interest to investigate the role of interlayer spacing in the nanocomposites involving MoS2 and graphene sheets and its control over electronic structures and catalytic properties. We have investigated this problem with emphasis on the hydrogen evolution properties of these structures by a combined experimental and theoretical study. We have linked MoS2 based nanocomposites with other 2D materials with varying interlayer spacing by changing the linker and studied their hydrogen evolution properties. The hydrogen evolution activity for these composites decreases with increasing linker length, which we can link to a decrease in magnitude of charge transfer across the layers with increasing interlayer spacing. Factors such as the nature of the sheets, interlayer distance as well as the nature of the linker provide pathways to tune the properties of covalently cross-linked 2D material rendering this new class of materials highly interesting.

12.
Angew Chem Int Ed Engl ; 58(21): 6926-6931, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30908780

RESUMO

We have carried out a combined experimental and theoretical investigation of the structures and properties of a family of cadmium phosphochlorides with varying Cl/Cd and P/Cd ratios, Cd2 P3 Cl, Cd4 P2 Cl3 , Cd3 PCl3, and Cd7 P4 Cl6 . Their optical band gaps are in the visible region and the values are sensitive to the Cl/Cd and P/Cd ratios, leading to an increase and decrease, respectively. First-principles calculations were used to understand the bonding and electronic structures. All phosphochlorides except Cd2 P3 Cl possess direct band gaps. The calculated dielectric constants and Born effective charges illustrate the bonding, hybridization, and ionic character in these compounds. The band positions indicate the thermodynamic feasibility to perform water splitting. All systems can be used in the hydrogen evolution reaction (HER), where Cd7 P4 Cl6 has the highest activity and Cd3 PCl3 the lowest. The apparent quantum yield is highest in Cd7 P4 Cl6 (20.1 %) even without the assistance of a co-catalyst. The HER activity can be understood on the basis of photoelectrochemical measurements.

13.
Chemistry ; 24(69): 18455-18462, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156027

RESUMO

Producing hydrogen from water in an efficient manner could significantly reduce consumption of fossil fuels. In this regard the abundant presence of water in oceans offers an important alternative approach for water splitting using seawater. Direct use of seawater for the generation of hydrogen is a difficult and complex process due to the presence of various ions in seawater, which affect the activity of the catalysts and makes the selectivity towards efficient water splitting a challenging task. Herein various ways are reported to efficiently reduce seawater to hydrogen under visible light irradiation by various catalysts already reported by this group. A better performance than pure water was observed in some cases, and in a few cases the opposite was observed, implying that with a proper approach seawater can be efficiently reduced to generate hydrogen.

14.
Chemphyschem ; 19(24): 3410-3417, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30371006

RESUMO

Aliovalent anion substitution in inorganic materials brings about marked changes in properties, as exemplified by N,F-codoped metal oxides. Recently, complete substitution of oxygen in ZnO by N and F was carried out to generate Zn2 NF. In view of the important properties of TiO2 , we have attempted to prepare TiNF by employing an entirely new procedure involving the reaction of TiN with TiF4 . While the reaction at low temperature (450 °C) yields TiNF in the anatase phase, reaction at a higher temperature (600 °C) yields TiNF in the rutile phase. This is interesting since the anatase phase of TiO2 also transforms to the rutile phase on heating. The lattice parameters of TiNF are close to those of the parent oxide. Partial substitution of oxygen in TiO2 by N and F reduces the band gap, but complete substitution increases the value comparable to that of the oxide. We have examined properties of N,F-codoped TiO2 , and more interestingly N,F-codoped Ti3 O5 , both with lower band gaps than the parent oxides. A detailed first-principles calculations has been carried out on structural and electronic properties of N,F-TiO2 and the TiNF phases. This has enabled us to understand the effects of N,F substitution in TiO2 in terms of the crystal structure, electronic structure and optical properties.

15.
Phys Chem Chem Phys ; 20(22): 15300-15306, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29796487

RESUMO

With the tactical integration of band edge energetics concepts in semiconducting films to reduce charge recombination and photocorrosion, an improvement in the photocurrent can be achieved by introducing CuO and NixPy into Cu2O films. Photodegradation limitations of Cu2O are overcome by the Cu2O-CuO-NixPy photocathode. NixPy, because of its excellent electrocatalytic hydrogen evolution activity, helps in obtaining better stability and activity. The individual effects of CuO and NixPy have been investigated and it is found that the activity enhancement stems mainly from the contribution of NixPy, whereas CuO helps with the unidirectional flow of photogenerated charges to prevent the photocorrosion of Cu2O. Relative to bare and modified Cu2O, Cu2O-CuO-NixPy shows a considerable reduction in the overpotential and a remarkable improvement in the photocurrent at 0 V (vs. RHE). This is the first report on the use of NixPy as the co-catalyst in a Cu2O based photocathode system to improve its photostability as well as its activity.

16.
Chemistry ; 23(4): 886-895, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27859870

RESUMO

Covalent functionalization has been effectively employed to attach benzene functionalities to MoS2 and MoSe2 nanosheets by the reaction with para-substituted iodobenzenes bearing -OCH3 , -H, and -NO2 as the substituents, where the electron-donating and electron-withdrawing power of the para substituent varies significantly. The functionalization is based on the formation of a C-S or C-Se linkage at the expense of the C-I bond on reaction of the iodobenzene with electron-rich 1T-MoS2 or 1T-MoSe2 . The degree of functionalization is in the range 4-24 % range, the value increases with the electron-withdrawing power of the para substituent. Semiconducting 2H-MoS2 and 2H-MoSe2 nanosheets can also be functionalized with iodobenzene by carrying out the reaction in the presence of a Pd0 catalyst. We have also carried out functionalization of 1T-MoS2 with pyrene, coumarin, and porphyrin derivatives. By using first-principles density functional calculations, we show that the bonding of the functional groups with the 1T phase is stronger than with the 2H phase. This is reflected in notable changes in the electronic structure of the former upon functionalization; a gap opens up in the electronic spectrum of the 1T phase. Functionalization with para-substituted benzenes leads to a change in the work function.

17.
Chemphyschem ; 18(21): 2985-2989, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28836713

RESUMO

An important aspect of phosphorene, the novel two-dimensional semiconductor, is whether holes and electrons can both be doped in this material. Some reports found that only electrons can be preferentially doped into phosphorene. There are some theoretical calculations showing charge-transfer interaction with both tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE). We have carried out an investigation of chemical doping of phosphorene by a variety of electron donor and acceptor molecules, employing both experiment and theory, Raman scattering being a crucial aspect of the study. We find that both electron acceptors and donors interact with phosphorene by charge-transfer, with the acceptors having more marked effects. All the three Raman bands of phosphorene soften and exhibit band broadening on interaction with both donor and acceptor molecules. First-principles calculations establish the occurrence of charge-transfer between phosphorene with donors as well as acceptors. The absence of electron-hole asymmetry is noteworthy.

18.
Chemphyschem ; 18(17): 2322-2327, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683188

RESUMO

As one of the major areas of interest in catalysis revolves around 2D materials based on molybdenum sulfide, we have examined the catalytic properties of bismuth selenides and tellurides, which are among the first chalcogenides to be proven as topological insulators (TIs). We find significant photochemical H2 evolution activity with these TIs as catalysts. H2 evolution increases drastically in nanosheets of Bi2 Te3 compared to single crystals. First-principles calculations show that due to the topology, surface states participate and promote the hydrogen evolution.

19.
J Am Chem Soc ; 138(26): 8228-34, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27299368

RESUMO

Substitution of aliovalent N(3-) and F(-) anions in place of O(2-) in ZnO brings about major changes in the electronic structure and properties, the composition, even with 10 atomic percent or less of the two anions, rendering the material yellow colored with a much smaller band gap. We have examined the variation of band gap of ZnO with progressive substitution of N and F and more importantly prepared Zn2NF which is the composition one obtains ultimately upon complete replacement of O(2-) ions. In this article, we present the results of a first complete study of the crystal and electronic structures as well as of properties of a stable metal nitride fluoride, Zn2NF. This material occurs in two crystal forms, tetragonal and orthorhombic, both with a band gap much smaller than that of ZnO. Electronic structures of Zn2NF as well as ZnO0.2N0.5F0.3 investigated by first-principles calculations show that the valence bands of these are dominated by the N (2p) states lying at the top. Interestingly, the latter is a p-type material, a property that has been anticipated for long time. The calculations predict conduction and valence band edges in Zn2NF to be favorable for water splitting. Zn2NF does indeed exhibit good visible-light-induced hydrogen evolution activity unlike ZnO. The present study demonstrates how aliovalent anion substitution can be employed for tuning band gaps of materials.

20.
Small ; 12(1): 16-23, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26425963

RESUMO

Photosynthesis that occurs in plants involves both the oxidation of water and the reduction of carbon dioxide. Plants carry out these reactions with ease, by involving electron-transport chains. In this article, hydrogen generation by the reduction of water in the laboratory by using semiconductor nanostructures through artificial photosynthesis is examined. Dye-sensitized photochemical generation of hydrogen from water is also discussed. Hydrogen generation by these means has great technological relevance, since it is an environmentally friendly fuel. The way in which oxygen can be generated by the oxidation of water using metal oxide catalysts is also shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA