Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 18(1): 51-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23573040

RESUMO

A transformation system which is free of in vitro plant regeneration following Agrobacterium infection is established for the forage legume, Sunnhemp (Crotalaria juncea L.) where in the entire embryo axis of the germinating seed was used as the target tissue for transformation. After standardization of transformation conditions, the cotyledonary node of the embryo axis was infected with Agrobacterium host LBA 4404 harboring the recombinant vector pCAMBIA 2301. The bivalent 1D gene of the two major foot and mouth disease virus (FMDV) serotypes 'O' and 'A22' and the neomycin phosphotransferase (nptII) gene were used as the markers for optimization of the protocol. The embryo axes were pricked randomly on the cotyledonary node and co-cultivated with Agrobacterium. The germlings were then allowed to grow under standard growth room conditions in to mature fertile plants. 60 T0 plants were established from 3 separate experiments. Three hundred seeds from the 60 T0 plants were sown to raise the T1 generation of which 180 were analyzed for integration of bivalent FMDV gene 1D "O" and "A22" and the nptII gene. Eighteen out of these 180 plants amplified both the marker genes. Two independent transgenic lines 24 and 37, showed elevated levels of expression of 12 µg and 8 µg (per gm of fresh leaf) of the bivalent ID antigen "O" and "A22" . The results showed that the transformation efficiency was 3 %. To the best of our knowledge, this is the first successful attempt of Agrobacterium tumefaciens mediated transformation of Sunnhemp. The protocol can generate whole plant transformants with relative ease and should be compatible to all genotypes of Sunnhemp.

2.
Front Plant Sci ; 13: 906207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898223

RESUMO

Globally, maize is an important cereal food crop with the highest production and productivity. Among the biotic constraints that limit the productivity of maize, the recent invasion of fall armyworm (FAW) in India is a concern. The first line of strategy available for FAW management is to evaluate and exploit resistant genotypes for inclusion in an IPM schedule. Screening for resistant maize genotypes against FAW is in its infancy in India, considering its recent occurrence in the country. The present work attempts to optimize screening techniques suited to Indian conditions, which involve the description of leaf damage rating (LDR) by comparing injury levels among maize genotypes and to validate the result obtained from the optimized screening technique by identification of lines potentially resistant to FAW under artificial infestation. Exposure to 20 neonate FAW larvae at the V5 phenological stage coupled with the adoption of LDR on a 1-9 scale aided in preliminary characterize maize genotypes as potentially resistant, moderately resistant, and susceptible. The LDR varies with genotype, neonate counts, and days after infestation. The genotypes, viz., DMRE 63, DML-163-1, CML 71, CML 141, CML 337, CML 346, and wild ancestor Zea mays ssp. parviglumis recorded lower LDR ratings against FAW and can be exploited for resistance breeding in maize.

3.
Plant Cell Physiol ; 44(4): 367-76, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12721377

RESUMO

Calcium-dependent protein kinase (CDPK) is expressed in sandalwood (Santalum album L.) seeds under developmental regulation, and it is localized with spherical storage organelles in the endosperm [Anil et al. (2000) Plant Physiol. 122: 1035]. This study identifies these storage organelles as oil bodies. A 55 kDa protein associated with isolated oil bodies, showed Ca(2+)-dependent autophosphorylation and also cross-reacted with anti-soybean CDPK. The CDPK activity detected in the oil body-protein fraction was calmodulin-independent and sensitive to W7 (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide) inhibition. Differences in Michaelis Menton kinetics, rate of histone phosphorylation and sensitivity to W7 inhibition between a soluble CDPK from embryos and the oil body-associated CDPK of endosperm suggest that these are tissue-specific isozymes. The association of CDPK with oil bodies of endosperm was found to show a temporal pattern during seed development. CDPK protein and activity, and the in vivo phosphorylation of Ser and Thr residues were detected strongly in the oil bodies of endosperm from maturing seed. Since oil body formation occurs during seed maturation, the observations indicate that CDPK and Ca(2+) may have a regulatory role during oil accumulation/oil body biogenesis. The detection of CDPK-protein and activity in oil bodies of groundnut, sesame, cotton, sunflower, soybean and safflower suggests the ubiquity of the association of CDPKs with oil bodies.


Assuntos
Cálcio/metabolismo , Organelas/enzimologia , Proteínas Quinases/metabolismo , Santalum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Germinação , Organelas/química , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/genética , Santalum/enzimologia , Sementes/química , Sementes/enzimologia , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA