Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Genet ; 105(6): 639-654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374498

RESUMO

The application of genomic technologies has led to unraveling of the complex genetic landscape of disorders of epilepsy, gaining insights into their underlying disease mechanisms, aiding precision medicine, and providing informed genetic counseling. We herein present the phenotypic and genotypic insights from 142 Indian families with epilepsy with or without comorbidities. Based on the electroclinical findings, epilepsy syndrome diagnosis could be made in 44% (63/142) of the families adopting the latest proposal for the classification by the ILAE task force (2022). Of these, 95% (60/63) of the families exhibited syndromes with developmental epileptic encephalopathy or progressive neurological deterioration. A definitive molecular diagnosis was achieved in 74 of 142 (52%) families. Infantile-onset epilepsy was noted in 81% of these families (61/74). Fifty-five monogenic, four chromosomal, and one imprinting disorder were identified in 74 families. The genetic variants included 65 (96%) single-nucleotide variants/small insertion-deletions, 1 (2%) copy-number variant, and 1 (2%) triplet-repeat expansion in 53 epilepsy-associated genes causing monogenic disorders. Of these, 35 (52%) variants were novel. Therapeutic implications were noted in 51% of families (38/74) with definitive diagnosis. Forty-one out of 66 families with monogenic disorders exhibited autosomal recessive and inherited autosomal dominant disorders with high risk of recurrence.


Assuntos
Epilepsia , Aconselhamento Genético , Fenótipo , Humanos , Epilepsia/genética , Epilepsia/epidemiologia , Epilepsia/diagnóstico , Índia/epidemiologia , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Predisposição Genética para Doença , Linhagem , Idade de Início , Estudos de Associação Genética , Adolescente , Genótipo , Variações do Número de Cópias de DNA/genética
2.
Am J Med Genet A ; : e63914, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470296

RESUMO

Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.

3.
Neurogenetics ; 24(2): 113-127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790591

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is an umbrella term encompassing various inherited neurological disorders characterised by abnormal iron accumulation in basal ganglia. We aimed to study the clinical, radiological and molecular spectrum of disorders with NBIA. All molecular-proven cases of NBIA presented in the last 5 years at 2 tertiary care genetic centres were compiled. Demographic details and clinical and neuroimaging findings were collated. We describe 27 individuals from 20 unrelated Indian families with causative variants in 5 NBIA-associated genes. PLA2G6-associated neurodegeneration (PLAN) was the most common, observed in 13 individuals from 9 families. They mainly presented in infancy with neuroregression and hypotonia. A recurrent pathogenic variant in COASY was observed in two neonates with prenatal-onset severe neurodegeneration. Pathogenic bi-allelic variants in PANK2, FA2H and C19ORF12 genes were observed in the rest, and these individuals presented in late childhood and adolescence with gait abnormalities and extrapyramidal symptoms. No intrafamilial and interfamilial variability were observed. Iron deposition on neuroimaging was seen in only 6/17 (35.3%) patients. A total of 22 causative variants across 5 genes were detected including a multiexonic duplication in PLA2G6. The variants c.1799G > A and c.2370 T > G in PLA2G6 were observed in three unrelated families. In silico assessments of 8 amongst 9 novel variants were also performed. We present a comprehensive compilation of the phenotypic and genotypic spectrum of various subtypes of NBIA from the Indian subcontinent. Clinical presentation of NBIAs is varied and not restricted to extrapyramidal symptoms or iron accumulation on neuroimaging.


Assuntos
Transtornos dos Movimentos , Malformações do Sistema Nervoso , Adolescente , Recém-Nascido , Humanos , Criança , Gânglios da Base , Genótipo , Transtornos dos Movimentos/patologia , Neuroimagem , Ferro , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Proteínas Mitocondriais/genética
4.
Clin Dysmorphol ; 33(4): 160-166, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39140381

RESUMO

INTRODUCTION: Biallelic variants in thiamine pyrophosphokinase 1 ( TPK1 ) are known to cause thiamine metabolism dysfunction syndrome 5 (THMD5). This disorder is characterized by neuroregression, ataxia and dystonia with basal ganglia abnormalities on neuroimaging. To date, 27 families have been reported with THMD5 due to variants in TPK1 . METHODS: We ascertained three individuals from three unrelated families. Singleton exome sequencing was performed on all three individuals, followed by in silico mutagenesis of the mutant TPK protein. Additionally, we reviewed the genotypic and phenotypic information of 27 previously reported individuals with THMD5. RESULTS: Singleton exome sequencing revealed a novel homozygous variant c.620A>T p.(Asp207Val) in TPK1 (NM_022445.4) in all three individuals. In silico mutagenesis of the mutant protein revealed a decrease in protein stability and altered interactions with its neighboring residues compared to the wild-type protein. Thus, based on strikingly similar clinical and radiological findings compared to the previously reported individuals and with the support of in silico mutagenesis findings, the above-mentioned variant appears to be the probable cause for the condition observed in the affected individuals in this study. CONCLUSION: We report a novel homozygous variant in TPK1 , which appears to be recurrent among the Indian population.


Assuntos
Homozigoto , Linhagem , Tiamina Pirofosfoquinase , Humanos , Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Tiamina Pirofosfoquinase/genética , Tiamina/metabolismo
5.
Eur J Hum Genet ; 32(10): 1291-1298, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38114583

RESUMO

The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Índia , Feminino , Masculino , Criança , Adolescente , Pré-Escolar , Adulto , Sequenciamento do Exoma , Síndrome , Variações do Número de Cópias de DNA , Estudos de Coortes , Mutação
6.
Eur J Med Genet ; 64(9): 104266, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34161859

RESUMO

Encephalopathy, progressive, early-onset, with brain edema and/or leukoencephalopathy, 2 (PEBEL2; MIM# 618321), caused by biallelic pathogenic variants in the NAD(P)HX dehydratase (NAXD) is a rare metabolite repair disorder. It is characterized by progressive neurological deterioration usually associated with a febrile illness. The other common findings include skin lesions, elevated serum or cerebrospinal fluid lactate levels, and brain neuroimaging abnormalities. Currently, variants in NAXD have been reported in eight unrelated individuals including six truncating and six missense variants. We report on an additional individual with characteristic findings of PEBEL2, and an additional finding of sparse scalp hair. A novel missense variant c.301G > A, p.(Ala101Thr) in a homozygous state was identified through exome sequencing. This study adds to the phenotypic and mutational spectrum of PEBEL2. We review the existing phenotypic and genotypic information for the individuals with this neurometabolic condition.


Assuntos
Edema Encefálico/genética , Hidroliases/genética , Leucoencefalopatias/genética , Convulsões/genética , Edema Encefálico/patologia , Pré-Escolar , Feminino , Humanos , Hidroliases/química , Leucoencefalopatias/patologia , Mutação de Sentido Incorreto , Fenótipo , Domínios Proteicos , Convulsões/patologia , Síndrome
7.
Eur J Hum Genet ; 29(12): 1774-1780, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34276053

RESUMO

Multilocus disease-causing genomic variations (MGVs) and multiple genetic diagnoses (MGDs) are increasingly being recognised in individuals and families with Mendelian disorders. This can be mainly attributed to the widespread use of genomic tests for the evaluation of these disorders. We conducted a retrospective study of families evaluated over the last 6 years at our centre to identify families with MGVs and MGDs. MGVs were observed in fourteen families. We observed five different consequences: (i) individuals with MGVs presenting as blended phenotypes (ii) individuals with MGVs presenting with distinct phenotypes (iii) individuals with MGVs with age-dependent penetrance (iv) individuals with MGVs with one phenotype obscured by another more predominant phenotype (v) two distinct phenotypes in different individuals in families with MGVs. Consanguinity was present in eight (8/14, 57.1%) of them. Thirteen families had two Mendelian disorders and one had three Mendelian disorders. The risk of recurrence of one or more conditions in these families ranged from 25% to 75%. Our findings underline the importance of the role of a clinical geneticist in systematic phenotyping, challenges in genetic counselling and risk estimation in families with MGVs and MGDs, especially in highly inbred populations.


Assuntos
Aconselhamento Genético/métodos , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Herança Multifatorial , Penetrância , Polimorfismo Genético , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Masculino , Linhagem , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA