Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(14): 145401, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846946

RESUMO

Transition metal chalcogenides have attracted much attention as high-performance electrocatalysts for hydrogen evolution reaction (HER). Here, we synthesized an efficient HER electrocatalyst of amorphous ruthenium sulfide (A-RuS2), exhibiting an overpotential of 141 mV at the current density of 10 mA cm-2 and a Tafel slope of 65.6 mV dec-1. Experiments demonstrate amorphous RuS2 has much better catalytic activity than that of its crystalline counterparts. Our study shows that amorphous RuS2 has increased intrinsic activity and active sites. This work provides a feasible strategy for the development of HER electrocatalysts in amorphous state.

2.
Adv Mater ; 36(1): e2306228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37671692

RESUMO

Conventional propellant materials, such as polymers and single metal elements, have long been investigated for their potential in pulsed laser micropropulsion (LMP) technology. However, achieving superior LMP efficiency through physical mixing of these materials remains a significant challenge. This study presents a paradigm shift by introducing porous crystalline polymers, known as metal-organic frameworks (MOFs), as novel propellants in pulsed LMP. MOFs are composed of metal cations and organic ligands that form ordered structures through coordination, eliminating the problem of local hot zones arising from uneven physical mixing encountered in LMP. In direct comparison to conventional polymers and single element targets, MOFs exhibit substantially higher LMP efficiency. By precisely tailoring the metal atom fraction within MOFs, an extraordinary ultrahigh efficiency of 51.15% is achieved in pulsed LMP, surpassing the performance of similar materials previously reported in the literature. This pioneering application of MOFs not only revolutionizes the field of LMP but also opens up new frontiers for MOF utilization in various energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA