Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 19(1): 180, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475917

RESUMO

BACKGROUND: Reverse Shoulder Arthroplasties (RSA) have become a primary choice for improving shoulder function and pain. However, the biomechanical failure mechanism of the humeral component is still unclear. The present study reports a novel protocol for microstructural imaging of the entire humerus implant under load before and after fracture. METHODS: A humerus specimen was obtained from a 75-year-old male donor. An expert surgeon implanted the specimen with a commonly used RSA implant (Aequalis reversed II, Stryker Orthopaedics, USA) and surgical procedure. The physiological glenohumeral contact force that maximized the distal implant migration was selected from a public repository ( orthoload.com ). Imaging and concomitant mechanical testing were performed using a large-volume micro-CT scanner (Nikon XT H 225 ST) and a custom-made compressive stage. Both when intact and once implanted, the specimen was tested under a pre-load and by imposing a constant deformation causing a physiological reaction load (650 N, 10 degrees adducted). The deformation of the implanted specimen was then increased up to fracture, which was identified by a sudden drop of the reaction force, and the specimen was then re-scanned. RESULTS: The specimen's stiffness decreased from 874 N/mm to 464 N/mm after implantation, producing movements of the bone-implant interface consistent with the implant's long-term stability reported in the literature. The micro-CT images displayed fracture of the tuberosity, caused by a combined compression and circumferential tension, induced by the distal migration of the implant. CONCLUSION: The developed protocol offers detailed information on implant mechanics under load relative to intact conditions and fracture, providing insights into the failure mechanics of RSA implants. This protocol can be used to inform future implant design and surgical technique improvements.


Assuntos
Fraturas Ósseas , Articulação do Ombro , Masculino , Humanos , Idoso , Ombro , Articulação do Ombro/cirurgia , Extremidade Superior , Úmero/cirurgia , Desenho de Prótese , Amplitude de Movimento Articular
2.
J Mech Behav Biomed Mater ; 151: 106347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181568

RESUMO

Primary stability, the mechanical fixation between implant and bone prior to osseointegration, is crucial for the long-term success of cementless tibial trays. However, little is known about the mechanical interplay between the implant and bone internally, as experimental studies quantifying internal strain are limited. This study employed digital volume correlation (DVC) to quantify the immediate post-implantation strain field of five cadaveric tibiae implanted with a commercially available cementless titanium tibial tray (Attune, DePuy Synthes). The tibiae were subjected to a five-step loading sequence (0-2.5 bodyweight, BW) replicating stair descent, with concomitant time-elapsed micro-CT imaging. With progressive loads, increased compression of trabecular bone was quantified, with the highest strains directly under the posterior region of the tibial tray implant, dissipating with increasing distance from the bone-implant interface. After load removal of the last load step (2.5BW), residual strains were observed in all of the five tibiae, with residual strains confined within 3.14 mm from the bone-implant interface. The residual strain is reflective of the observed initial migration of cementless tibial trays reported in clinical studies. The presence of strains above the yield strain of bone accepted in literature suggests that inelastic properties should be included within finite element models of the initial mechanical environment. This study provides a means to experimentally quantify the internal strain distribution of human tibia with cementless trays, increasing the understanding of the mechanical interaction between bone and implant.


Assuntos
Artroplastia do Joelho , Tíbia , Humanos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Microtomografia por Raio-X , Interface Osso-Implante , Cadáver
3.
J Mech Behav Biomed Mater ; 134: 105336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863298

RESUMO

Primary stability of press-fit tibial trays is achieved by introducing an interference fit between bone and implant. The internal cancellous bone strains induced during this process and during loading have yet to be quantified experimentally. Advancements in large-gantry micro-CT imaging and digital volume correlation (DVC) allow quantification of such strains. However, before undertaking such a test, experimental requirements and DVC performance need to be examined, particularly considering the presence of a large orthopaedic implant (tibial tray). The aim of this study was to assess the DVC zero-strain accuracy (mean absolute error: MAER) and precision (standard deviation of error: SDER) on a cadaveric human tibia implanted with a titanium press-fit tray across four plausible scanning configurations, using a cabinet micro-CT system (Nikon XT H 225 ST). These varied in rotation step and resulting scanning time (106 min vs. 66 min), presence or absence of a 2 mm-thick aluminium cylinder for mechanical testing, and X-ray tube voltage (150 kVp vs. 215 kVp). One proximal tibia was implanted and micro-CT scanned (42 µm/pixel), with repeated scanning and specimen repositioning in between. DVC (DaVis, LaVision, direct correlation) was performed on nine cubic volumes of interest (VOIs: 13.4 mm-side) and across the entire proximal tibia. Strain errors were comparable across the four scanning configurations and sufficiently low for assessing bone within its elastic region in VOIs (MAER=223-540 µÎµ; SDER=88-261 µÎµ) and at organ level (MAER=536 µÎµ; SDER=473 µÎµ). Whilst the investigated experimental conditions, including a large titanium implant, present added complexity for DVC analysis, scans of sufficient quality can be achieved, reaching a compromise between the DVC requirements and the wanted application. The approach used for choosing the X-ray source settings considering the transmitted X-ray signal intensity and source power, is also discussed.


Assuntos
Tíbia , Titânio , Osso e Ossos , Osso Esponjoso , Humanos , Estresse Mecânico , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X
4.
J Orthop Res ; 40(5): 1125-1134, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34191337

RESUMO

Biomechanical factors (e.g., joint loading) have a significant role in the progression of osteoarthritis (OA). However, some relationships between in vivo joint loading indices and tibial cartilage thickness are conflicting. This study investigated relationships between pre-operative in vivo external knee joint moments, joint alignment and regional tibial cartilage thickness using micro-CT in subjects with end-stage knee OA. Tibial plateaus from 25 patients that underwent knee replacement for OA were micro-CT scanned (17 µm/voxel). Prior to surgery, subjects underwent gait analysis to calculate external knee moments. The mechanical axis deviation (MAD) was obtained from pre-operative radiographs. Cartilage thickness (Cart.Th) was analyzed from micro-CT images, in anteromedial, anterolateral, posteromedial and posterolateral subregions of interest. Medial-to-lateral Cart.Th ratios were also explored. Relationships between Cart.Th and joint loading indices were examined using Pearson's correlations. Significant correlations were found between Cart.Th and joint loading indices, positive anteromedially with the first peak knee adduction moment (r = 0.55, p < 0.01) and external rotation moment (ERM; r = 0.52, p < 0.01), and negative with MAD (r = -0.76, p < 0.001). In the lateral regions, these correlations had opposite signs. The medial-to-lateral Cart.Th ratio correlated strongly with ERM (r = 0.63, p = 0.001) and MAD (r = -0.75, p < 0.001). Joint loading indices correlated with regional cartilage thickness values and their medial-to-lateral ratios in end-stage knee OA subjects, with higher regional loads corresponding to thinner cartilage. These relationships have the opposite sign compared to the subchondral bone microarchitecture found in our previous study on the same specimens, which may suggest a complementary bone-cartilage interplay in response to loading.


Assuntos
Cartilagem Articular , Articulação do Joelho , Osteoartrite do Joelho , Cartilagem Articular/diagnóstico por imagem , Marcha/fisiologia , Humanos , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X/métodos
5.
J Orthop Res ; 39(9): 1988-1999, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33241575

RESUMO

This preliminary study quantified tibia cartilage thickness (Cart.Th), subchondral bone plate thickness (SBPl.Th) and subchondral trabecular bone (STB) microarchitecture in subjects with varus- or valgus- malaligned knees diagnosed with end-stage knee osteoarthritis (OA) and compared them to controls (non-OA). Tibial plateaus from 25 subjects with knee-OA (undergoing knee arthroplasty) and 15 cadavers (controls) were micro-CT scanned (17 µm/voxel). Joint alignment was classified radiographically for OA subjects (varus-aligned n = 18, valgus-aligned n = 7). Cart.Th, SBPl.Th, STB bone volume fraction (BV/TV) and their medial-to-lateral ratios were analyzed in anteromedial, anterolateral, posteromedial and posterolateral subregions. Varus-OA and valgus-OA were compared to controls. Compared to controls (1.19-1.54 mm), Cart.Th in varus-OA was significantly lower anteromedially (0.58 mm, -59%) and higher laterally (2.19-2.47 mm, +60-63%); in valgus-OA, Cart.Th was significantly higher posteromedially (1.86 mm, +56%). Control medial-to-lateral Cart.Th ratios were around unity (0.8-1.1), in varus-OA significantly below (0.2-0.6) and in valgus-OA slightly above (1.0-1.3) controls. SBPl.Th and BV/TV were significantly higher medially in varus-OA (0.58-0.72 mm and 37-44%, respectively) and laterally in valgus-OA (0.60-0.61 mm and 32-37%), compared to controls (0.26-0.47 mm and 18-37%). In varus-OA, the medial-to-lateral SBPl.Th and BV/TV ratios were above unity (1.4-2.4) and controls (0.8-2.1); in valgus-OA they were closer to unity (0.8-1.1) and below controls. Varus- and valgus-OA tibia differ significantly from controls in Cart.Th, SBPl.Th and STB microarchitecture depending on joint alignment, suggesting structural changes in OA may reflect differences in medial-to-lateral load distribution upon the tibial plateau. Here we identified an inverse relationship between cartilage thickness and underlying subchondral bone, suggesting a whole-joint response in OA to daily stimuli.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Placas Ósseas , Osso Esponjoso/diagnóstico por imagem , Cartilagem , Cartilagem Articular/diagnóstico por imagem , Humanos , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Tíbia/diagnóstico por imagem
6.
J Mech Behav Biomed Mater ; 97: 278-287, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31146201

RESUMO

Primary press-fit fixation of femoral knee prostheses is obtained thanks to the inside dimensions of the implant being undersized with respect to the bone cuts created intra-operatively, dictated by a press-fit specified by the implant design. However, during prostheses press-fit implantation, high compressive and shear stresses at the implant-bone interface are generated, which causes permanent bone damage. The extent of this damage is unknown, but it may influence the implant stability and be a contributing factor to aseptic loosening, a main cause of revisions for knee arthroplasty. The aim of this ex-vivo study was to quantify, using high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging and Digital Volume Correlation (DVC), permanent bone deformation due to press-fit femoral knee implantation of a commonly used implant. Six human cadaveric distal femora were resected and imaged with HR-pQCT (60.7 µm/voxel, isotropic). Femurs were fitted with cementless femoral knee implants (Sigma PFC) and rescanned after implant removal. For each femur, permanent deformation was examined in the anterior, posterior-medial and posterior-lateral condyles for volumes of interest (VOIs) of 10 mm depth. The bone volume fraction (BV/TV) for the VOIs in pre- and post-implantation images was calculated, at increasing depth from the bone surface. DVC was applied on the VOIs pre- and post-implantation, to assess trabecular bone displacements and plastically accumulated strains. The "BV/TVpost/BV/TVpre ratio vs. depth" showed, consistently among the six femurs, three consecutive points of interest at increasing bone depth, indicating: bone removal (ratio<100%), compaction (ratio>100%) and no changes (ratio = 100%). Accordingly, the trabecular bone displacement computed by DVC suggested bone compaction up to 2.6 ±â€¯0.8 mm in depth, with peak third principal strains of -162,100 ±â€¯55,000 µÎµ (mean absolute error: 1,000-2,000 µÎµ, SD: 200-500 µÎµ), well above the yield strain of bone (7,000-10,000 µÎµ). Combining 3D-imaging, at spatial resolutions obtainable with clinical HR-pQCT, and DVC, determines the extent of plastic deformation and accumulated compressive strains occurring within the bone due to femoral press-fit implantation. The methods and data presented can be used to compare different implants, implant surface coatings and press-fit values. These can also be used to advance and validate computational models by providing information about the bone-implant interface obtained experimentally. Future studies using these methods can assist in determining the influence of bone damage on implant stability and the subsequent osseointegration.


Assuntos
Fêmur/cirurgia , Prótese do Joelho , Osseointegração , Tomografia Computadorizada por Raios X , Idoso de 80 Anos ou mais , Artroplastia do Joelho , Osso e Ossos/cirurgia , Interface Osso-Implante , Cadáver , Fêmur/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Plásticos , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA