Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(8): 4528-4543, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32227117

RESUMO

The cortical areas that process disparity-defined motion-in-depth (i.e., cyclopean stereomotion [CSM]) were characterized with functional magnetic resonance imaging (fMRI) in two awake, behaving macaques. The experimental protocol was similar to previous human neuroimaging studies. We contrasted the responses to dynamic random-dot patterns that continuously changed their binocular disparity over time with those to a control condition that shared the same properties, except that the temporal frames were shuffled. A whole-brain voxel-wise analysis revealed that in all four cortical hemispheres, three areas showed consistent sensitivity to CSM. Two of them were localized respectively in the lower bank of the superior temporal sulcus (CSMSTS) and on the neighboring infero-temporal gyrus (CSMITG). The third area was situated in the posterior parietal cortex (CSMPPC). Additional regions of interest-based analyses within retinotopic areas defined in both animals indicated weaker but significant responses to CSM within the MT cluster (most notably in areas MSTv and FST). Altogether, our results are in agreement with previous findings in both human and macaque and suggest that the cortical areas that process CSM are relatively well preserved between the two primate species.


Assuntos
Córtex Cerebral/fisiologia , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Animais , Mapeamento Encefálico , Feminino , Macaca mulatta , Imageamento por Ressonância Magnética
2.
Curr Biol ; 31(21): 4839-4844.e4, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34506729

RESUMO

How the evolution of speech has transformed the human auditory cortex compared to other primates remains largely unknown. While primary auditory cortex is organized largely similarly in humans and macaques,1 the picture is much less clear at higher levels of the anterior auditory pathway,2 particularly regarding the processing of conspecific vocalizations (CVs). A "voice region" similar to the human voice-selective areas3,4 has been identified in the macaque right anterior temporal lobe with functional MRI;5 however, its anatomical localization, seemingly inconsistent with that of the human temporal voice areas (TVAs), has suggested a "repositioning of the voice area" in recent human evolution.6 Here we report a functional homology in the cerebral processing of vocalizations by macaques and humans, using comparative fMRI and a condition-rich auditory stimulation paradigm. We find that the anterior temporal lobe of both species possesses cortical voice areas that are bilateral and not only prefer conspecific vocalizations but also implement a representational geometry categorizing them apart from all other sounds in a species-specific but homologous manner. These results reveal a more similar functional organization of higher-level auditory cortex in macaques and humans than currently known.


Assuntos
Córtex Auditivo , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Humanos , Macaca , Imageamento por Ressonância Magnética , Primatas , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA