Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 44(10): e2100267, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050893

RESUMO

Knowledge of eukaryotic life cycles and associated genome dynamics stems largely from research on animals, plants, and a small number of "model" (i.e., easily cultivable) lineages. This skewed sampling results in an underappreciation of the variability among the many microeukaryotic lineages, which represent the bulk of eukaryotic biodiversity. The range of complex nuclear transformations that exists within lineages of microbial eukaryotes challenges the textbook understanding of genome and nuclear cycles. Here, we look in-depth at Foraminifera, an ancient (∼600 million-year-old) lineage widely studied as proxies in paleoceanography and environmental biomonitoring. We demonstrate that Foraminifera challenge the "rules" of life cycles developed largely from studies of plants and animals. To this end, we synthesize data on foraminiferal life cycles, focusing on extensive endoreplication within individuals (i.e., single cells), the unusual nuclear process called Zerfall, and the separation of germline and somatic function into distinct nuclei (i.e., heterokaryosis). These processes highlight complexities within lineages and expand our understanding of the dynamics of eukaryotic genomes.


Assuntos
Foraminíferos , Animais , Biodiversidade , Eucariotos/genética , Células Eucarióticas , Foraminíferos/genética , Genoma/genética
2.
Nat Commun ; 14(1): 4959, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587119

RESUMO

Research in extreme environments has substantially expanded our understanding of the ecology and evolution of life on Earth, but a major group of organisms has been largely overlooked: microbial eukaryotes (i.e., protists). In this Perspective, we summarize data from over 80 studies of protists in extreme environments and identify focal lineages that are of significant interest for further study, including clades within Echinamoebida, Heterolobosea, Radiolaria, Haptophyta, Oomycota, and Cryptophyta. We argue that extreme environments are prime sampling targets to fill gaps in the eukaryotic tree of life and to increase our understanding of the ecology, metabolism, genome architecture, and evolution of eukaryotic life.


Assuntos
Células Eucarióticas , Haptófitas , Criptófitas , Ambientes Extremos , Ecologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA