Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991629

RESUMO

Recently, significant progress has been achieved in developing deep learning-based approaches for estimating depth maps from monocular images. However, many existing methods rely on content and structure information extracted from RGB photographs, which often results in inaccurate depth estimation, particularly for regions with low texture or occlusions. To overcome these limitations, we propose a novel method that exploits contextual semantic information to predict precise depth maps from monocular images. Our approach leverages a deep autoencoder network incorporating high-quality semantic features from the state-of-the-art HRNet-v2 semantic segmentation model. By feeding the autoencoder network with these features, our method can effectively preserve the discontinuities of the depth images and enhance monocular depth estimation. Specifically, we exploit the semantic features related to the localization and boundaries of the objects in the image to improve the accuracy and robustness of the depth estimation. To validate the effectiveness of our approach, we tested our model on two publicly available datasets, NYU Depth v2 and SUN RGB-D. Our method outperformed several state-of-the-art monocular depth estimation techniques, achieving an accuracy of 85%, while minimizing the error Rel by 0.12, RMS by 0.523, and log10 by 0.0527. Our approach also demonstrated exceptional performance in preserving object boundaries and faithfully detecting small object structures in the scene.

2.
Sensors (Basel) ; 22(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891033

RESUMO

In current decades, significant advancements in robotics engineering and autonomous vehicles have improved the requirement for precise depth measurements. Depth estimation (DE) is a traditional task in computer vision that can be appropriately predicted by applying numerous procedures. This task is vital in disparate applications such as augmented reality and target tracking. Conventional monocular DE (MDE) procedures are based on depth cues for depth prediction. Various deep learning techniques have demonstrated their potential applications in managing and supporting the traditional ill-posed problem. The principal purpose of this paper is to represent a state-of-the-art review of the current developments in MDE based on deep learning techniques. For this goal, this paper tries to highlight the critical points of the state-of-the-art works on MDE from disparate aspects. These aspects include input data shapes and training manners such as supervised, semi-supervised, and unsupervised learning approaches in combination with applying different datasets and evaluation indicators. At last, limitations regarding the accuracy of the DL-based MDE models, computational time requirements, real-time inference, transferability, input images shape and domain adaptation, and generalization are discussed to open new directions for future research.


Assuntos
Realidade Aumentada , Aprendizado Profundo , Previsões
3.
Diagnostics (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441319

RESUMO

BACKGROUND: The aim of the present study was to test our deep learning algorithm (DLA) by reading the retinographies. METHODS: We tested our DLA built on convolutional neural networks in 14,186 retinographies from our population and 1200 images extracted from MESSIDOR. The retinal images were graded both by the DLA and independently by four retina specialists. Results of the DLA were compared according to accuracy (ACC), sensitivity (S), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC), distinguishing between identification of any type of DR (any DR) and referable DR (RDR). RESULTS: The results of testing the DLA for identifying any DR in our population were: ACC = 99.75, S = 97.92, SP = 99.91, PPV = 98.92, NPV = 99.82, and AUC = 0.983. When detecting RDR, the results were: ACC = 99.66, S = 96.7, SP = 99.92, PPV = 99.07, NPV = 99.71, and AUC = 0.988. The results of testing the DLA for identifying any DR with MESSIDOR were: ACC = 94.79, S = 97.32, SP = 94.57, PPV = 60.93, NPV = 99.75, and AUC = 0.959. When detecting RDR, the results were: ACC = 98.78, S = 94.64, SP = 99.14, PPV = 90.54, NPV = 99.53, and AUC = 0.968. CONCLUSIONS: Our DLA performed well, both in detecting any DR and in classifying those eyes with RDR in a sample of retinographies of type 2 DM patients in our population and the MESSIDOR database.

4.
Diagnostics (Basel) ; 10(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238512

RESUMO

Breast density estimation with visual evaluation is still challenging due to low contrast and significant fluctuations in the mammograms' fatty tissue background. The primary key to breast density classification is to detect the dense tissues in the mammographic images correctly. Many methods have been proposed for breast density estimation; nevertheless, most of them are not fully automated. Besides, they have been badly affected by low signal-to-noise ratio and variability of density in appearance and texture. This study intends to develop a fully automated and digitalized breast tissue segmentation and classification using advanced deep learning techniques. The conditional Generative Adversarial Networks (cGAN) network is applied to segment the dense tissues in mammograms. To have a complete system for breast density classification, we propose a Convolutional Neural Network (CNN) to classify mammograms based on the standardization of Breast Imaging-Reporting and Data System (BI-RADS). The classification network is fed by the segmented masks of dense tissues generated by the cGAN network. For screening mammography, 410 images of 115 patients from the INbreast dataset were used. The proposed framework can segment the dense regions with an accuracy, Dice coefficient, Jaccard index of 98%, 88%, and 78%, respectively. Furthermore, we obtained precision, sensitivity, and specificity of 97.85%, 97.85%, and 99.28%, respectively, for breast density classification. This study's findings are promising and show that the proposed deep learning-based techniques can produce a clinically useful computer-aided tool for breast density analysis by digital mammography.

5.
IEEE Trans Image Process ; 28(9): 4429-4443, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31021769

RESUMO

In the context of 2D/3D registration, this paper introduces an approach that allows for matching features detected in two different modalities, photographs, and 3D models, by using a common 2D representation. More precisely, 2D images are matched with a set of depth images representing the 3D model. After introducing the concept of Curvilinear Saliency, which is related to curvature estimation, we propose a new ridge and valley detector for depth images rendered from 3D models. A variant of this detector is adapted to photographs, first by considering multi-scale features and second by integrating the focus curve principle. Finally, a registration algorithm determines the correct view of the 3D model and, thus, the pose of the photograph. This approach relies on the Histogram of Curvilinear Saliency (HCS), an adaptation of the Histogram of Oriented Gradients (HOG) to the proposed features in 2D and 3D. The presented results highlight both the quality of the features detected in terms of repeatability and the interest of the approach for registration and pose estimation.

6.
IEEE Trans Image Process ; 22(7): 2589-99, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23529091

RESUMO

Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA