Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 287(35): 29273-84, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778266

RESUMO

Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin that includes four-and-a-half LIM domain protein-1 (Fhl1) and components of the mitogen-activated protein signaling cascade, which impacted muscle compliance in Fhl1 knock-out cardiac muscle. However, direct regulation of these molecular components in mediating titin N2B function remained unresolved. Here we identify Fhl1 as a novel negative regulator of titin N2B levels and phosphorylation-mediated mechanics. We specifically identify titin N2B as a novel substrate of extracellular signal regulated-kinase-2 (Erk2) and demonstrate that Fhl1 directly interferes with Erk2-mediated titin-N2B phosphorylation. We highlight the critical region in titin-N2B that interacts with Fhl1 and residues that are dependent on Erk2-mediated phosphorylation in situ. We also propose a potential mechanism for a known titin-N2B cardiomyopathy-causing mutation that involves this regulatory complex. These studies shed light on a novel mechanism regulating titin-N2B mechano-signaling as well as suggest that dysfunction of these pathways could be important in cardiac disease states affecting muscle compliance.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Mecanotransdução Celular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Conectina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas Musculares/genética , Mutação , Miocárdio/patologia , Fosforilação , Proteínas Quinases/genética , Estrutura Terciária de Proteína
2.
J Clin Invest ; 118(12): 3870-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19033658

RESUMO

The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the dysfunction of these pathways may lead to disease. Here, we found that four-and-a-half LIM domains 1 (FHL1) is part of a complex within the cardiomyocyte sarcomere that senses the biomechanical stress-induced responses important for cardiac hypertrophy. Mice lacking Fhl1 displayed a blunted hypertrophic response and a beneficial functional response to pressure overload induced by transverse aortic constriction. A link to the Galphaq (Gq) signaling pathway was also observed, as Fhl1 deficiency prevented the cardiomyopathy observed in Gq transgenic mice. Mechanistic studies demonstrated that FHL1 plays an important role in the mechanism of pathological hypertrophy by sensing biomechanical stress responses via the N2B stretch sensor domain of titin and initiating changes in the titin- and MAPK-mediated responses important for sarcomere extensibility and intracellular signaling. These studies shed light on the physiological regulation of the sarcomere in response to hypertrophic stress.


Assuntos
Mecanotransdução Celular , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Estresse Fisiológico , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Sistema de Sinalização das MAP Quinases/genética , Mecanotransdução Celular/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Estresse Fisiológico/genética
3.
Mol Cell Biomech ; 6(3): 145-59, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19670825

RESUMO

Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.


Assuntos
Regulação da Expressão Gênica , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologia , Animais , Fator Natriurético Atrial/genética , Hipertrofia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Peptídeo Natriurético Encefálico/genética , Músculos Papilares/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Mecânico , Fatores de Tempo , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA