Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(11): 11E805, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430370

RESUMO

Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

2.
Rev Sci Instrum ; 81(10): 10E527, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034055

RESUMO

The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼40,000 fps at ∼64×4 pixels) with resolutions up to 640×512 pixels suitable for use with a CO(2) laser are readily available, if expensive.

3.
Int J Infrared Millimeter Waves ; 29(11): 1011-1018, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19081774

RESUMO

We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications.

4.
Rev Sci Instrum ; 79(10): 10F321, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044634

RESUMO

A compact pellet injector is being built for the TJ-II stellarator. It is an upgraded version of the "pellet injector in a suitcase" developed at Oak Ridge National Laboratory and installed on the Madison Symmetric Torus where it continues to be used in many plasma experiments. The design aim is to provide maximum flexibility at minimal cost, while allowing for future upgrades. It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation, a combined mechanical punch/propellant valve system, pellet diagnostics, and an injection line, destined for use as an active diagnostic and for fueling. In order to fulfill both objectives it will be sufficiently flexible to permit pellets, with diameters from 0.4 to 1 mm, to be fabricated and accelerated to velocities from 150 to approximately 1000 m s(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA