Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429579

RESUMO

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Assuntos
Epilepsia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento , Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Obesidade , Humanos , Camundongos , Animais , Deficiência Intelectual/genética , Proteínas Repressoras , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Transcrição
2.
Methods Mol Biol ; 2515: 343-354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776362

RESUMO

The generation of new neurons in the adult brain throughout life is integral to brain plasticity and repair. Adult neural stem cells (aNSCs), present in the subventricular zone (SVZ) of the lateral ventricle wall and the subgranular zone (SGZ) of the hippocampal dentate gyrus, divide symmetrically or asymmetrically to maintain the stem cell pool or become committed progenitors and differentiate into various cell lineages. Depletion or dysregulation of aNSCs impairs proper brain connectivity and function and can contribute to several brain diseases including cognitive and neurodegenerative disorders and brain cancer. In this chapter, we present our optimized method to obtain and maintain reproducible neurosphere cultures from the adult mouse brain followed by evaluation of self-renewal using the extreme limiting dilution assay (ELDA) software. We use this assay routinely on aNSCs obtained from patient mouse models to generate log fraction plots and provide confidence intervals for all limiting dilution assay (LDA) data. At the same time, given the low number of NSCs required for the completion of the ELDA experiment, it is feasible to employ this approach to conduct high-content compound screening for therapeutic interventions aimed at enhancing the stem cell pool or combating a cohort of genetic and epigenetic disorders.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Encéfalo , Humanos , Ventrículos Laterais , Camundongos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA