Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 12(29): 18685-18696, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873343

RESUMO

Nanoporous zinc borate (ZB) and 10% lanthanum-doped porous zinc borate (LZB) were synthesized to explore the role of porosity and doping in zinc borate during lubrication. HR-SEM, TEM, and HR-TEM authenticated nanoporous structures. The tribological properties of their blends with paraffin oil (PO) were compared by employing ASTM D4172 and ASTM D5183 norms on a four-ball tester. Vanadium selenide nanosheets (VSe2) were used to reinforce the structure of LZB for further advancement of the tribological properties. The superiority of the LZB/VSe2 over LZB and VSe2 nanosheets could be adjudged by tribological data. The porosity and lanthanum doping have yielded commendable tribological activity. The VSe2 nanosheets have strengthened the LZB matrix. The other constituent oxides of tribofilm from the LZB matrix, based on EDX analysis and XPS studies of the worn surface, ZnO, B2O3, La2O3, and V2O5, have abetted lubrication. The AFM and SEM investigations of wear track corroborated the tribological results.

2.
RSC Adv ; 10(17): 10188-10196, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498590

RESUMO

Some tetrahydropyrazolopyridines (THPP-H) with the methoxy (THPP-OMe) and methyl (THPP-Me) substituents were synthesized by a one-pot multi-component reaction. NMR spectroscopy (1H and 13C) was used to authenticate the synthesis. According to the results of tribological tests ASTM D4172, and ASTM D5183 on a four-ball tester in paraffin oil (PO) at a concentration of 0.25% w/v, their relative tribo-activity along with a reference additive, zinc dialkyldithiophosphate (ZDDP) could be figured out as mentioned below-THPP-OMe > THPP-Me > THPP-H > ZDDP. The calculation of frictional power loss from the coefficient of friction data of the tested additives supports the given order. As is apparent from AFM and SEM micrographs of the wear scar surface for plain oil with and without different tetrahydropyrazopyridines, surface evenness endorses the above trend. Proof for strong adsorption of the synthesized additives is provided by EDX analysis of the steel ball surface after performing the tribological test, where nitrogen and oxygen are vividly seen as heteroatoms. XPS studies reveal the composition of the in situ formed tribofilm. The moieties containing carbon bonded to oxygen/nitrogen as decomposed products of the additive together with oxides of iron in +II or +III oxidation states are perceptible in the tribofilm, the tribofilm interferes with the proximity of the surfaces keeping them far apart. Consequently, friction and wear are remarkably reduced. Findings from Density Functional Theory (DFT) calculations are in full agreement with the results obtained from tribological experiments.

3.
ACS Appl Mater Interfaces ; 11(2): 2418-2430, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30605299

RESUMO

Zinc oxide (ZnO) and magnesium-doped zinc oxide nanoparticles, Zn0.88Mg0.12O (ZMO), were prepared by autocombustion method. Further, nanocomposites of the as-prepared nanoparticles with microwave-synthesized reduced graphene oxide (rGO) nanosheets, ZnO-rGO and ZMO-rGO, have also been prepared with a view to see the effect of doping of magnesium in zinc oxide on the tribological properties of the nanocomposite. Morphologies of nanoparticles/nanosheets and their nanohybrids have been studied by employing scanning electron microscopy (SEM)/high-resolution (HR) SEM with energy-dispersive X-ray (EDX), transmission electron microscopy (TEM)/HR-TEM, X-ray diffraction, Fourier transform infrared, UV-visible, Raman, and X-ray photoelectron spectroscopy (XPS) techniques. Triboactivity of the additives in paraffin oil has been interpreted considering the parameters mean wear scar diameter, coefficient of friction, load-carrying capacity, and wear rates obtained from ASTM D4172 and ASTM D5183 tests using a four-ball lubricant tester at optimized concentration (0.125% w/v). The performance of base lube and its admixtures has been found to lie in the order ZMO-rGO > ZnO-rGO > ZMO > ZnO > rGO > paraffin oil. Outstanding enhancement in triboactivity of nanocomposites, particularly that of ZMO-rGO indicates that nanoparticles are irrefutably instrumental in reinforcement of rGO, and on the other hand, rGO is associated with abatement of agglomeration of the nanoparticles. Thus, interactions between rGO and nanoparticles are vehemently synergic in nature. It is noteworthy that the best results were obtained with the following optimized concentrations: ZnO/ZMO 0.25%; rGO 0.15% and composites 0.125% w/v. Morphological studies of the wear track lubricated with different additives have been performed using SEM and contact mode atomic force microscopy. Results are in conformity with the order given above. The EDX analysis of ZMO-rGO exhibits the presence of zinc and magnesium on the worn surface, supporting their role in the formation of in situ tribofilm. Their role is further corroborated by XPS studies. Owing to their excellent tribological behavior, these sulfur- and phosphorus-free composites may be recommended as potential wear and friction modifiers.

4.
ACS Appl Mater Interfaces ; 8(18): 11698-710, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27097308

RESUMO

The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting surfaces significantly from wear and tear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA