Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Spray Technol ; 31(1-2): 28-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624722

RESUMO

In DC plasma spray torches, anode erosion is a common concern. It mainly depends on the heat flux brought by the arc and on the dimensions and residence time of the arc attachment to a given location on the anode wall. The latter depend, to a great extent, on the attachment mode of the arc on the anode wall. This paper compares the anode arc attachment modes predicted by an LTE (Local Thermodynamic Equilibrium) and 2-T (two-temperature) arc models that include the electrodes in the computational domain. It deals with a commercial cascaded-anode plasma torch operated at high current (500 A) and low gas flow rate (60 NLPM of argon). It shows that the LTE model predicted a constricted anode arc attachment that moves on the anode ring, while the 2-T model predicted a diffuse and steady arc attachment. The comparison between the predicted and measured arc voltage showed that the 2-T prediction is closer to the actual voltage. Also, the post-mortem observation of a new anode ring of the actual plasma torch operated under the same conditions for a short time confirmed a diffuse arc attachment on a new anode.

2.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744156

RESUMO

Spark Plasma Sintering (SPS) has become a conventional and promising sintering method for powder consolidation. This study aims to well understand the mechanisms of densification encountered during SPS treatments, especially in the early stages of sintering. The direct current (DC) electrical behavior of copper granular medium is characterized. Their properties are correlated with their microstructural evolutions through post-mortem scanning electron microscope (SEM) observations to allow a thorough understanding of the involved Branly effect that is suspected to occur in SPS. The electrical response is studied by modifying the initial thickness of the oxide layer on particles surfaces and applying various mechanical loads on the granular medium. Without load and at low current, the measured quasi-reversible behavior is connected to the formation of spots at the microcontacts between the particles. By increasing the current, the Branly transition from an insulating to a conductive state suddenly occurs. The insulating oxide layer is destroyed, and micro-bridges are created. The application of a mechanical pressure strongly modifies the DC Branly effect. Increasing low stress leads to a strong decrease in the breakdown field. For high-applied pressure, successive drops in the electric field are detected during the electrical transition. These successive drops are induced by microcracking of the insulating oxide layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA