Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Genet Med ; 26(2): 101029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982373

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Assuntos
Testes Genéticos , Variação Genética , Humanos , Alelos , Bases de Dados Genéticas
2.
Nucleic Acids Res ; 49(D1): D1207-D1217, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33264411

RESUMO

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Bases de Dados Factuais , Doença/genética , Genoma , Fenótipo , Software , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Recém-Nascido , Cooperação Internacional , Internet , Triagem Neonatal/métodos , Farmacogenética/métodos , Terminologia como Assunto
3.
Hum Mutat ; 43(6): 717-733, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35178824

RESUMO

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes.


Assuntos
Genômica , Doenças Raras , Exoma , Estudos de Associação Genética , Genômica/métodos , Humanos , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética
4.
Genet Med ; 24(8): 1732-1742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35507016

RESUMO

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Assuntos
Bases de Dados Genéticas , Genômica , Testes Genéticos , Variação Genética , Humanos
5.
Am J Hum Genet ; 100(5): 695-705, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475856

RESUMO

Provision of a molecularly confirmed diagnosis in a timely manner for children and adults with rare genetic diseases shortens their "diagnostic odyssey," improves disease management, and fosters genetic counseling with respect to recurrence risks while assuring reproductive choices. In a general clinical genetics setting, the current diagnostic rate is approximately 50%, but for those who do not receive a molecular diagnosis after the initial genetics evaluation, that rate is much lower. Diagnostic success for these more challenging affected individuals depends to a large extent on progress in the discovery of genes associated with, and mechanisms underlying, rare diseases. Thus, continued research is required for moving toward a more complete catalog of disease-related genes and variants. The International Rare Diseases Research Consortium (IRDiRC) was established in 2011 to bring together researchers and organizations invested in rare disease research to develop a means of achieving molecular diagnosis for all rare diseases. Here, we review the current and future bottlenecks to gene discovery and suggest strategies for enabling progress in this regard. Each successful discovery will define potential diagnostic, preventive, and therapeutic opportunities for the corresponding rare disease, enabling precision medicine for this patient population.


Assuntos
Cooperação Internacional , Doenças Raras/diagnóstico , Doenças Raras/genética , Bases de Dados Factuais , Exoma , Genoma Humano , Humanos
6.
Genet Med ; 22(8): 1391-1400, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32366968

RESUMO

PURPOSE: Computational documentation of genetic disorders is highly reliant on structured data for differential diagnosis, pathogenic variant identification, and patient matchmaking. However, most information on rare diseases (RDs) exists in freeform text, such as academic literature. To increase availability of structured RD data, we developed a crowdsourcing approach for collecting phenotype information using student assignments. METHODS: We developed Phenotate, a web application for crowdsourcing disease phenotype annotations through assignments for undergraduate genetics students. Using student-collected data, we generated composite annotations for each disease through a machine learning approach. These annotations were compared with those from clinical practitioners and gold standard curated data. RESULTS: Deploying Phenotate in five undergraduate genetics courses, we collected annotations for 22 diseases. Student-sourced annotations showed strong similarity to gold standards, with F-measures ranging from 0.584 to 0.868. Furthermore, clinicians used Phenotate annotations to identify diseases with comparable accuracy to other annotation sources and gold standards. For six disorders, no gold standards were available, allowing us to create some of the first structured annotations for them, while students demonstrated ability to research RDs. CONCLUSION: Phenotate enables crowdsourcing RD phenotypic annotations through educational assignments. Presented as an intuitive web-based tool, it offers pedagogical benefits and augments the computable RD knowledgebase.


Assuntos
Crowdsourcing , Humanos , Bases de Conhecimento , Aprendizado de Máquina , Fenótipo , Estudantes
7.
Genet Med ; 22(8): 1427, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32555415

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nucleic Acids Res ; 45(D1): D865-D876, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899602

RESUMO

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Assuntos
Ontologias Biológicas , Biologia Computacional , Genômica , Fenótipo , Algoritmos , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Doenças Raras/diagnóstico , Doenças Raras/etiologia , Software , Pesquisa Translacional Biomédica/métodos
9.
Genet Med ; 19(5): 546-552, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27657686

RESUMO

PURPOSE: It has been argued that rare diseases should be recognized as a public health priority. However, there is a shortage of epidemiological data describing the true burden of rare diseases. This study investigated hospital service use to provide a better understanding of the collective health and economic impacts of rare diseases. METHODS: Novel methodology was developed using a carefully constructed set of diagnostic codes, a selection of rare disease cohorts from hospital administrative data, and advanced data-linkage technologies. Outcomes included health-service use and hospital admission costs. RESULTS: In 2010, cohort members who were alive represented approximately 2.0% of the Western Australian population. The cohort accounted for 4.6% of people discharged from hospital and 9.9% of hospital discharges, and it had a greater average length of stay than the general population. The total cost of hospital discharges for the cohort represented 10.5% of 2010 state inpatient hospital costs. CONCLUSIONS: This population-based cohort study provides strong new evidence of a marked disparity between the proportion of the population with rare diseases and their combined health-system costs. The methodology will inform future rare-disease studies, and the evidence will guide government strategies for managing the service needs of people living with rare diseases.Genet Med advance online publication 22 September 2016.


Assuntos
Serviços de Saúde/economia , Tempo de Internação/economia , Doenças Raras/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Serviços de Saúde/estatística & dados numéricos , Humanos , Armazenamento e Recuperação da Informação/economia , Pessoa de Meia-Idade , Doenças Raras/economia , Estudos Retrospectivos , Austrália Ocidental/epidemiologia , Adulto Jovem
10.
Orphanet J Rare Dis ; 19(1): 28, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280999

RESUMO

BACKGROUND: In European Union countries, any disease affecting less than 5 people in 10,000 is considered rare. As expertise is scarce and rare diseases (RD) are complex, RD patients can remain undiagnosed for many years. The period of searching for a diagnosis, called diagnostic delay, sometimes leads to a diagnostic dead end when the patient's disease is impossible to diagnose after undergoing all available investigations. In recent years, extensive efforts have been made to support the implementation of ORPHA nomenclature in health information systems (HIS) so as to allow RD coding. Until recently, the nomenclature only encompassed codes for specific RD. Persons suffering from a suspected RD who could not be diagnosed even after full investigation, could not be coded with ORPHAcodes. The recognition of the RD status is necessary for patients, even if they do not have a precise diagnosis. It can facilitate reimbursement of care, be socially and psychologically empowering, and grant them access to scientific advances. RESULTS: The RD-CODE project aimed at making those patients identifiable in HIS in order to produce crucial epidemiological data. Undiagnosed patients were defined as patients for whom no clinically-known disorder could be confirmed by an expert center after all reasonable efforts to obtain a diagnosis according to the state-of-the-art and diagnostic capabilities available. Three recommendations for the coding of undiagnosed RD patients were produced by a multi-stakeholder panel of experts: 1/ Capture the diagnostic ascertainment for all rare disease cases; 2/ Use the newly created ORPHAcode (ORPHA:616874 "Rare disorder without a determined diagnosis after full investigation"), available in the Orphanet nomenclature: as the code is new, guidelines are essential to ensure its correct and homogeneous use for undiagnosed patients' identification in Europe and beyond; 3/ Use additional descriptors in registries. CONCLUSIONS: The recommendations can now be implemented in HIS (electronic health records and/or registries) and could be a game-changer for patients, clinicians and researchers in the field, enabling assessment of the RD population, including undiagnosed patients, adaptation of policy measures including financing for care and research programs, and to improved access of undiagnosed patients to research programs.


Assuntos
Sistemas de Informação em Saúde , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Diagnóstico Tardio , Europa (Continente) , União Europeia
11.
Eur J Hum Genet ; 32(2): 182-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926714

RESUMO

Rare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin although 35% of them do not yet have an identified causative gene. A significant proportion of patients suspected to have a genetic RD receive an inconclusive exome/genome sequencing. Working towards the International Rare Diseases Research Consortium (IRDiRC)'s goal for 2027 to ensure that all people living with a RD receive a diagnosis within one year of coming to medical attention, the Solve-RD project aims to identify the molecular causes underlying undiagnosed RD. As part of this strategy, we developed a phenotypic similarity-based variant prioritization methodology comparing submitted cases with other submitted cases and with known RD in Orphanet. Three complementary approaches based on phenotypic similarity calculations using the Human Phenotype Ontology (HPO), the Orphanet Rare Diseases Ontology (ORDO) and the HPO-ORDO Ontological Module (HOOM) were developed; genomic data reanalysis was performed by the RD-Connect Genome-Phenome Analysis Platform (GPAP). The methodology was tested in 4 exemplary cases discussed with experts from European Reference Networks. Variants of interest (pathogenic or likely pathogenic) were detected in 8.8% of the 725 cases clustered by similarity calculations. Diagnostic hypotheses were validated in 42.1% of them and needed further exploration in another 10.9%. Based on the promising results, we are devising an automated standardized phenotypic-based re-analysis pipeline to be applied to the entire unsolved cases cohort.


Assuntos
Genômica , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/genética , Fenótipo , Mapeamento Cromossômico
12.
Orphanet J Rare Dis ; 18(1): 267, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667299

RESUMO

BACKGROUND: Estimates of rare disease (RD) population impact in terms of number of affected patients and accurate disease definition is hampered by their under-representation in current coding systems. This study tested the use of a specific RD codification system (ORPHAcodes) in five European countries/regions (Czech Republic, Malta, Romania, Spain, Veneto region-Italy) across different data sources over the period January 2019-September 2021. RESULTS: Overall, 3133 ORPHAcodes were used to describe RD diagnoses, mainly corresponding to the disease/subtype of disease aggregation level of the Orphanet classification (82.2%). More than half of the ORPHAcodes (53.6%) described diseases having a very low prevalence (< 1 case per million), and most commonly captured rare developmental defects during embryogenesis (31.3%) and rare neurological diseases (17.6%). ORPHAcodes described disease entities more precisely than corresponding ICD-10 codes in 83.4% of cases. CONCLUSIONS: ORPHAcodes were found to be a versatile resource for the coding of RD, able to assure easiness of use and inter-country comparability across population and hospital databases. Future research on the impact of ORPHAcoding as to the impact of numbers of RD patients with improved coding in health information systems is needed to inform on the real magnitude of this public health issue.


Assuntos
Hospitais , Doenças Raras , Humanos , Doenças Raras/epidemiologia , República Tcheca , Bases de Dados Factuais , Europa (Continente)
13.
Orphanet J Rare Dis ; 18(1): 171, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386449

RESUMO

Glanzmann thrombasthenia (GT) is a genetic bleeding disorder characterised by severely reduced/absent platelet aggregation in response to multiple physiological agonists. The severity of bleeding in GT varies markedly, as does the emergency situations and complications encountered in patients. A number of emergency situations may occur in the context of GT, including spontaneous or provoked bleeding, such as surgery or childbirth. While general management principles apply in each of these settings, specific considerations are essential for the management of GT to avoid escalating minor bleeding events. These recommendations have been developed from a literature review and consensus from experts of the French Network for Inherited Platelet Disorders, the French Society of Emergency Medicine, representatives of patients' associations, and Orphanet to aid decision making and optimise clinical care by non-GT expert health professionals who encounter emergency situations in patients with GT.


Assuntos
Medicina de Emergência , Trombastenia , Humanos , Trombastenia/genética , Trombastenia/terapia , Consenso , Pessoal de Saúde
14.
medRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066232

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.

15.
Hum Mutat ; 33(9): 1333-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22573485

RESUMO

Neurological disorders comprise one of the largest groups of human diseases. Due to the myriad symptoms and the extreme degree of clinical variability characteristic of many neurological diseases, the differential diagnosis process is extremely challenging. Even though most neurogenetic diseases are individually rare, collectively, the subgroup of neurogenetic disorders is large, comprising more than 2,400 different disorders. Recently, increasing efforts have been undertaken to unravel the molecular basis of neurogenetic diseases and to correlate pathogenetic mechanisms with clinical signs and symptoms. In order to enable computer-based analyses, the systematic representation of the neurological phenotype is of major importance. We demonstrate how the Human Phenotype Ontology (HPO) can be incorporated into these efforts by providing a systematic semantic representation of phenotypic abnormalities encountered in human genetic diseases. The combination of the HPO together with the Orphanet disease classification represents a promising resource for automated disease classification, performing computational clustering and analysis of the neurogenetic phenome. Furthermore, standardized representations of neurologic phenotypic abnormalities employing the HPO link neurological phenotypic abnormalities to anatomical and functional entities represented in other biomedical ontologies through the semantic references provided by the HPO.


Assuntos
Biologia Computacional/métodos , Doenças do Sistema Nervoso/genética , Fenótipo , Software , Análise por Conglomerados , Biologia Computacional/normas , Bases de Dados Genéticas , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos , Armazenamento e Recuperação da Informação/métodos , Doenças do Sistema Nervoso/diagnóstico , Padrões de Referência
16.
Hum Mutat ; 33(5): 803-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22422702

RESUMO

Rare disorders are scarcely represented in international classifications and therefore invisible in information systems. One of the major needs in health information systems and for research is to share and/or to integrate data coming from heterogeneous sources with diverse reference terminologies. ORPHANET (www.orpha.net) is a multilingual information portal on rare diseases and orphan drugs. Orphanet information system is supported by a relational database built around the concept of rare disorders. Representation of rare diseases in Orphanet encompasses levels of increasing complexity: lexical (multilingual terminology), nosological (multihierarchical classifications), relational (annotations-epidemiological data-and classes of objects-genes, manifestations, and orphan drugs-integrated in a relational database), and interoperational (semantic interoperability). Rare disorders are mapped to International Classification of Diseases (10th version), SNOMED CT, MeSH, MedDRA, and UMLS. Genes are cross-referenced with HGNC, UniProt, OMIM, and Genatlas. A suite of tools allow for extraction of massive datasets giving different views that can be used in bioinformatics to answer complex questions, intended to serve the needs of researchers and the pharmaceutical industry in developing medicinal products for rare diseases. An ontology is under development. The Orphanet nomenclature is at the crossroads of scientific data repositories and of clinical terminology standards, and is suitable to be used as a standard terminology.


Assuntos
Sistemas On-Line , Doenças Raras , Bases de Dados Factuais , Humanos , Disseminação de Informação , Doenças Raras/classificação , Terminologia como Assunto
17.
Eur J Hum Genet ; 29(9): 1325-1331, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075208

RESUMO

For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient's data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe.


Assuntos
Doenças Genéticas Inatas/genética , Disseminação de Informação , Colaboração Intersetorial , Doenças Raras/genética , Conferências de Consenso como Assunto , Europa (Continente) , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Humanos , Doenças Raras/diagnóstico , Sequenciamento do Exoma/métodos
18.
Stud Health Technol Inform ; 160(Pt 1): 481-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20841733

RESUMO

Rare diseases cover a group of conditions characterized by a low prevalence, affecting less than 1 in 2,000 people; 5000 to 7000 rare diseases have been currently identified in Europe. Most diseases do not have any curative treatment. They represent thus an important public health concern. CEMARA is based on a n-tier architecture. Its main objective is to collect continuous and complete records of patients with rare diseases, and their follow-up through a web-based Information System, and to analyse the epidemiological patterns. In France, 41 out of 131 labelled Reference Centres (RC) are sharing CEMARA. Presently 56,593 cases have been registered by more than 850 health care professionals belonging to 171 clinical sites. The national demand of care was explored in relation with the offer of care in order to reach an improved match. Within 2 years, CEMARA stimulated sharing a common platform, a common ontology with Orphanet and initiating new cohorts of rare diseases for improving patient care and research.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Sistemas Computadorizados de Registros Médicos , Doenças Raras/epidemiologia , Vigilância de Evento Sentinela , França , Humanos , Prevalência
19.
Eur J Hum Genet ; 28(2): 165-173, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31527858

RESUMO

Rare diseases, an emerging global public health priority, require an evidence-based estimate of the global point prevalence to inform public policy. We used the publicly available epidemiological data in the Orphanet database to calculate such a prevalence estimate. Overall, Orphanet contains information on 6172 unique rare diseases; 71.9% of which are genetic and 69.9% which are exclusively pediatric onset. Global point prevalence was calculated using rare disease prevalence data for predefined geographic regions from the 'Orphanet Epidemiological file' (http://www.orphadata.org/cgi-bin/epidemio.html). Of the 5304 diseases defined by point prevalence, 84.5% of those analysed have a point prevalence of <1/1 000 000. However 77.3-80.7% of the population burden of rare diseases is attributable to the 4.2% (n = 149) diseases in the most common prevalence range (1-5 per 10 000). Consequently national definitions of 'Rare Diseases' (ranging from prevalence of 5 to 80 per 100 000) represent a variable number of rare disease patients despite sharing the majority of rare disease in their scope. Our analysis yields a conservative, evidence-based estimate for the population prevalence of rare diseases of 3.5-5.9%, which equates to 263-446 million persons affected globally at any point in time. This figure is derived from data from 67.6% of the prevalent rare diseases; using the European definition of 5 per 10 000; and excluding rare cancers, infectious diseases, and poisonings. Future registry research and the implementation of rare disease codification in healthcare systems will further refine the estimates.


Assuntos
Doenças Genéticas Inatas/epidemiologia , Doenças Raras/epidemiologia , Bases de Dados Factuais/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Humanos , Prevalência
20.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-34367618

RESUMO

Copy number variations (CNVs) are major causative contributors both in the genesis of genetic diseases and human neoplasias. While "High-Throughput" sequencing technologies are increasingly becoming the primary choice for genomic screening analysis, their ability to efficiently detect CNVs is still heterogeneous and remains to be developed. The aim of this white paper is to provide a guiding framework for the future contributions of ELIXIR's recently established human CNV Community, with implications beyond human disease diagnostics and population genomics. This white paper is the direct result of a strategy meeting that took place in September 2018 in Hinxton (UK) and involved representatives of 11 ELIXIR Nodes. The meeting led to the definition of priority objectives and tasks, to address a wide range of CNV-related challenges ranging from detection and interpretation to sharing and training. Here, we provide suggestions on how to align these tasks within the ELIXIR Platforms strategy, and on how to frame the activities of this new ELIXIR Community in the international context.


Assuntos
Biologia Computacional , Variações do Número de Cópias de DNA , Variações do Número de Cópias de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA