Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012232

RESUMO

Glial fibrillary acidic protein (GFAP) is the major intermediate filament III protein of astroglia cells which is upregulated in traumatic brain injury (TBI). Here we reported that GFAP is truncated at both the C- and N-terminals by cytosolic protease calpain to GFAP breakdown products (GBDP) of 46-40K then 38K following pro-necrotic (A23187) and pro-apoptotic (staurosporine) challenges to primary cultured astroglia or neuron-glia mixed cells. In addition, with another pro-apoptotic challenge (EDTA) where caspases are activated but not calpain, GFAP was fragmented internally, generating a C-terminal GBDP of 20 kDa. Following controlled cortical impact in mice, GBDP of 46-40K and 38K were formed from day 3 to 28 post-injury. Purified GFAP protein treated with calpain-1 and -2 generates (i) major N-terminal cleavage sites at A-56*A-61 and (ii) major C-terminal cleavage sites at T-383*Q-388, producing a limit fragment of 38K. Caspase-6 treated GFAP was cleaved at D-78/R-79 and D-225/A-226, where GFAP was relatively resistant to caspase-3. We also derived a GBDP-38K N-terminal-specific antibody which only labels injured astroglia cell body in both cultured astroglia and mouse cortex and hippocampus after TBI. As a clinical translation, we observed that CSF samples collected from severe human TBI have elevated levels of GBDP-38K as well as two C-terminally released GFAP peptides (DGEVIKES and DGEVIKE). Thus, in addition to intact GFAP, both the GBDP-38K as well as unique GFAP released C-terminal proteolytic peptides species might have the potential in tracking brain injury progression.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Astrócitos/metabolismo , Biomarcadores , Calpaína/metabolismo , Caspase 6 , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Camundongos , Peptídeo Hidrolases , Peptídeos
2.
Mol Neurobiol ; 55(3): 2174-2184, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28290147

RESUMO

In the USA, there are approximately 12,000 new cases of spinal cord injury (SCI) each year and some 1.2 million people living with paralysis due to SCI. Seven percent of them are paralyzed due to an accident or injury occurring while serving in the military. Here, we report a systematic study on protein biomarker candidates in a rat SCI model with either moderate or severe injury. Tissue, cerebrospinal fluid (CSF), and serum samples were obtained at 4 h, 24 h, and 7 days post-injury. The candidate biomarkers included axonal injury markers αII-spectrin breakdown products (SBDP150/145/120), neuronal cell body injury marker ubiquitin C-terminal hydrolase-L1 (UCH-L1), astrogliosis/astroglial injury markers S100 calcium-binding protein-ß (S100ß), glial fibrillary acidic protein (GFAP) and GFAP breakdown products (GBDPs), demyelination marker myelin basic protein (MBP), axonal injury marker phosphorylated neurofilament-H (pNF-H), and neuroinflammation marker interleukin-6 (IL-6). SBDP150/145, UCH-L1, GFAP, and S100ß were found as acute biomarkers with significantly elevated levels within 24 h. GBDP44, GBDP38, and pNF-H are acute and subacute biomarkers that were found to have increased at 4 h, 24 h, and 7 days. MBP and SBDP120 were considered subacute biomarkers which were only detectable at 7 days post-injury. These results not only allow us to gain important insight into the patho-mechanisms of SCI but also showcase the possibility of using some of the protein biomarkers to track injury severity and disease progression and resolution. These biomarkers can potentially serve as tools that assist therapy development and clinical trials.


Assuntos
Mediadores da Inflamação/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Índice de Gravidade de Doença , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Biomarcadores/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Neurofilamentos/metabolismo , Ratos , Ratos Endogâmicos F344 , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA